Зонная теория Ансела Адамса и расчет экспозиции по нескольким точкам замера. Понимание и применение зонной теории адамса

Прочитав наше руководство, вы будете лучше понимать, как сделать хороший снимок, и станете лучше снимать. Зонная теория позволяла получать предсказуемые результаты при любых условиях съемки. В ее основе лежат наблюдения фотографов эпохи черно-белой пленки. В те времена автоматического определения экспозиции не было, а ошибка при съемке стоила дорого.

Зачем же изучать зонную теорию, когда все современные камеры не требуют дорогостоящих расходников, располагают набором сюжетных программ и неплохим автозамером экспозиции? Цифровые фотоаппараты не идеальны. Они сконструированы таким образом, что хорошо снимают только при «средних» условиях.

Когда мы только начинаем фотографировать, то просто достаем камеру, наводим и «щелкаем». И такой подход едва ли гарантирует отличные кадры, в чем вы могли убедиться и сами. Как только фотоаппарат попадает в условия, отличные от «средних» (например, контровый свет или высокий контраст), автоматика дает сбои.

Чтобы порадовать нас красивой фотографией, устройству нужно узнать яркость снимаемой сцены, после чего подобрать правильные значения ISO, выдержки и диафрагмы. Оценка яркости возлагается на экспонометр, или датчик замера.

Экспонометры бывают двух типов - для измерения падающего и отраженного света. Экспонометры падающего света - небольшие приборы, судящие об освещении через сферу из молочного пластика.

Чтобы узнать правильные настройки, экспонометр нужно поднести к объекту съемки. Это нетрудно при фотографировании моделей в студии, но невозможно в других условиях.

Экспонометры отраженного света замеряют яркость по свету, который отражается в объектив камеры от объектов в кадре. Этот тип замера не требует дополнительных передвижений и - вот сюрприз - уже встроен в ваш фотоаппарат.

Но он также не идеален. Встроенный экспонометр считает абсолютно все объекты в кадре серыми поверхностями со средним показателем отражения.

Цифровая камера считает любой объект в кадре средне-серым, или нейтральным серым. На каждом снимке. Пожалуй, мы наконец нашли кое-какой плюс пасмурной погоды в Беларуси.

Встроенный экспонометр постарается сделать черного кота более светлым (то есть серым). А увидев снег, электроника подумает: «Ужас как ярко» - и тоже превратит его в серый.

Снег и черный кот для фотоаппарата будут как бы из одного материала. А ведь очевидно, что это не так: снег отражает много света, а черный кот - совсем мало. В реальной жизни абсолютно все материалы вокруг нас отражают свет по-разному.

Что такое нейтральный серый цвет?

Каким бы большим ни был динамический диапазон вашей камеры, дисплеи и бумага требуют укладывать весь диапазон яркостей в 5-6 ступеней экспозиции (EV, Exposure Value), или стопов. Нейтральный серый цвет соответствует середине черно-белого диапазона.

У современных цифровых фотоаппаратов есть несколько режимов замера экспозиции. Все они работают одинаково - считают область своего прицела средне-серой отражающей поверхностью. Вот только форма и область «прицела» могут быть разными.

Режимы замера

Центровзвешенный

Этот режим замера пришел из зеркальных камер прошлого века. Фотоаппарат рассчитывает экспозицию по кругу в центральной части кадра, информация о яркости за его пределами учитывается лишь на четверть.

Частичный

Частичный замер оперирует кружком примерно в 10-30% площади кадра и не учитывает информацию за его пределами.

Точечный

Точечный замер берет информацию о яркости кадра из крохотного кружка в 1-5% площади. Информация за его пределами не учитывается.

Матричный

Матричный (оценочный) замер у всех производителей имеет свои особенности. Он учитывает экспозицию отдельно для всех фрагментов, на которые делится кадр. Фрагменты могут быть разных размеров и вносить различный вклад в замер экспозиции. Чаще всего в память камеры просто внесена база из нескольких тысяч типовых снимков c правильной экспозицией.

В зеркальных фотоаппаратах с большим числом точек фокусировки замер сопряжен со сработавшими датчиками автофокуса.

Матричный замер, как правило, дает наилучшие естественные результаты при автоматической экспозиции, но все равно не идеален и черные коты по-прежнему могут получиться если не серыми, то темно-серыми.

Все режимы замера по-своему полезны, главное использовать их с учетом ситуации. Например, точечный хорошо использовать при контровом свете, матричный - на контрастных сценах и так далее. Замер различается в камерах разных производителей, так что желательно прочитать про такие особенности работы вашего фотоаппарата в инструкции пользователя.

Нейтральный серый цвет соответствует значению «0» на шкале экспозиции. Замеряя экспозицию по нейтральному тону, мы указываем корректную точку отсчета.

Фотограф Ансель Адамс разбивал все тона от полностью черного до полностью белого на 10 зон:

В цифровой фотографии задействован лишь диапазон из 5 зон, в теории Адамса они эквиваленты зонам с III по VII. Все, что находится за пределами этих зон, нас не интересует - это черный или белый цвет без деталей и фактуры.

И если у вас с собой нет карточки нейтрального серого цвета, не проблема. Средние тона в кадре присутствуют почти всегда, и отличать их в палитре цветов - вопрос небольшой практики. Какие же цвета эквивалентны среднему серому тону в повседневной жизни?

Средние тона (0 EV), V зона по Адамсу

Цвет листвы и травы - идеальный средний тон. Стена из красного кирпича. Ржавый металл. Синие джинсы. Чистое синее небо над домами также идеальный серый тон.

Если в кадре присутствуют средние тона (например, трава под солнечным светом и трава в тени), вы должны замерять экспозицию по участку, который освещен.

Средние тона с увеличением экспозиции на один стоп превращаются в пастельные.

Пастельные тона (+1 EV), VI зона по Адамсу

Розовый, желтый, светло-красный, зеленый, голубой и светло-фиолетовый. Голубое небо, светлые участки закатов и рассветов. Кожа людей европеоидной расы. Для правильного замера можно использовать свою ладонь: она не загорает на солнце и почти всегда эквивалентна +1 EV.

Средние тона с уменьшением экспозиции на один стоп превращаются в темные тона.

Темные тона (–1 EV), IV зона по Адамсу

Глубокий синий, темно-зеленый и коричневый. Хвоя елок. Кора деревьев. Асфальт. Они выглядят более глубокими. Если чувствуете глубину цвета, то наверняка натолкнулись на темный цвет.

Экстремальные условия (+/– 2 EV), III и VII зоны по Адамсу

Это соответствует снегу, саже и прочим очень черным или очень белым участкам. Распознать их не составляет труда.

Как получить правильную экспозицию фотографии?

Для этого нам нужно лишить автоматику камеры права самостоятельно выбирать средний тон. Чтобы это вдруг оказался снег или черный кот. Самостоятельно найдите средний тон в кадре и «скормите» его экспозамеру.

По чему замерять? По любому удобному для вас участку кадра.

Рассмотрим пример съемки заката. Замеряем экспозицию по яркому участку (VII зона по Адамсу):

Камера не знает о солнце того, что знаем мы. Для нее оно - нейтральный тон. И если нейтральный тон так ослепительно ярок, фотоаппарат принимает это в расчет. Ну а мы получаем темный снимок.

Замеряем экспозицию по лодке (III зона по Адамсу):

Лодка находится в контровом свете, то есть обращенная к нам ее часть располагается в тени. Камера этого не знает и справедливо считает, что в кадре очень темно. А мы получаем слишком светлый снимок и, как результат, - блеклое небо.

Замеряем экспозицию по среднему тону (V зона по Адамсу):

И получаем хороший результат. Именно так выглядела эта сцена на закате.

Получить кадр с правильной экспозицией при зимней съемке - почти невозможно для вашей камеры...

И очень просто для вас. Вы замеряете экспозицию по снегу и выставляете компенсацию на +2 EV:

Этим мы как бы говорим фотоаппарату: «Тут очень ярко. Чтобы получить естественную картинку, нужно добавить больше света на матрицу!»

Вполне возможно, что при пейзажной съемке очень контрастных сцен вы не сможете уместить все в одном кадре. В таких случаях лучше воспользоваться брекетингом экспозиции. Наличия больших участков чистого черного или белого цвета допускать нельзя.

На маленькие белые пятна от солнца можно не обращать внимания. При съемке портретов точно так же можно игнорировать небольшие провалы в темный. При фотографировании предметов белый фон тоже не может считаться браком. Все зависит от главного объекта в кадре. Именно его нужно экспонировать правильно, а остальной диапазон ляжет сам собой.

Гистограмма в помощь

Самая замечательная особенность цифровых камер - возможность оценить фотографию на экранчике. Впрочем, ЖК-дисплеи приспособлены давать хорошую картинку только при комнатной эксплуатации, полагаться на них под открытым небом нежелательно. Мы советуем оценивать по дисплею только композицию кадра и его резкость.

Таким образом, нужно следить за гистограммой. Если вы, например, снимаете лунный пейзаж, концентрация гистограммы слева - это нормально. Если вы снимаете людей на солнце, пик гистограммы должен быть справа. А вот противоположная ситуация недвусмысленно намекает - что-то у вас не так.

Игнорирование гистограммы снижает наши шансы на качественную постобработку, так как темные зоны переносят ее болезненно, они бедные на информацию (появятся некрасивые градиенты и шумы). Если вы захотите напечатать такую фотографию, то сразу почувствуете разницу.

Заключение

Данная методика работы с экспозицией требует некоторого времени перед съемкой и на стадии обработки. Не останавливайтесь на небе и зеленой листве, замеряйте экспозицию по своему рюкзаку и любимым джинсам, по бежевой плитке и Национальной библиотеке. Со временем вы добьетесь максимального качества снимков в любых условиях и сможете более тонко чувствовать фотографию.

Плюсы такого подхода к экспозиции феноменальны: даже на глаз вы сможете получать контрастные и красивые кадры, превосходя по качеству снимков самую современную автоматику.

Используемого фотоматериала число зон может быть различным.

Любой освещённый объект можно разбить на 10 зон или ступеней от самого яркого до самого тёмного. Переход от одной ступени к другой соответствует одной ступени экспозиции (то есть изменению её в 2 раза), и тона воспроизводятся на обычной плёнке пропорционально, то есть, если один из тонов воспроизведён верно, то все остальные будут располагаться в соответствующем относительно друг друга порядке. Ниже условно описаны эти ступени:

0 Абсолютно чёрный тон: очень глубокие тени, полное отсутствие деталей.
I Самые тёмные тона, близкие к чёрному: глубокая тень - без деталей, но с признаками фактуры. В цветных фотографиях допустимы искажения цвета.
II Появление первых деталей в тенях: складки, переломы, контурные линии и т. д. В цветных фотографиях допустимы искажения цвета.
III Не совсем чёрный: умеренно тёмные тона.
IV Средняя по плотности тень при солнечном освещении в ясный день. Загорелые люди, насыщенная по цвету трава, деревья.
V Стандартный серый тон (отражательная способность 18 %). Нормальный загар.
VI Светлая кожа, чистое небо, строения из белого материала.
VII Светло-серые, пастельные тона; типографский текст на белой бумаге.
VIII Белый тон с минимумом деталей или фактурой.
IX Совершенно белый тон без деталей, солнечные блики.

Принципы

Визуализация

Представление изображения заключается в сочетании и распределении элементов сцены в плоскости кадра в соответствии с желанием фотографа. Получение желаемого изображения достигается путем построения изображения (выбор точки съёмки, выбор объектива, перемещение камеры) и контроля экспозиции, который обеспечивал бы оптимальное сочетание света и тени на снимке.

Представление конечного результата фотосъёмки до момента экспонирования и называется визуализацией в зонной системе Адамса.

Экспонометрия

Практически любой объект, который фотограф хотел бы запечатлеть, состоит из отдельных участков с разной степенью освещённости и яркости. Если проводить экспозамер по отдельным участкам изображения с разной степенью освещённости, то можно убедиться, что для каждого участка будут определяться разные параметры экспозиции. Время экспозиции снимка будет одинаковым для всего объекта, но яркость отдельных участков будет зависеть от освещённости каждого из них.

В большинстве случаев параметры экспозиции определяются с помощью экспонометра . Первые экспонометры определяли среднюю общую яркость, и калибровка по экспонометру была рассчитана на получение подходящих значений экспозиции для съемки типичных сцен вне помещений. Однако в случае, когда часть плоскости кадра включала большие освещенные или теневые участки, средний коэффициент отражения мог сильно отличаться от такового для «типичных» сцен, и тональный рисунок изображения получался неудачным.

Усреднённый замер не в состоянии распознать объекты с равномерной освещённостью и объекты, содержащие тёмные и светлые участки. Если к снимку будут применены усреднённые значения экспозиции, то значения экспозиции для отдельных участков снимка будут зависеть от разницы между их собственными значениями экспозиции и применённых средних значений. Например, экспозиция тёмного участка с показателем отражения 4 % будет различной в сцене с применённым средним показателем отражения, равным 20 %, и в сцене с применённым средним показателем отражения, равным 12 %. При съемке вне помещения в солнечную погоду экспозиция тёмного объекта будет также зависеть от того, в тени размещён объект или на солнце. В зависимости от характера сцены или замысла фотографа любые из этих значений могут оказаться приемлемыми. Тем не менее, в определённых ситуациях фотограф может захотеть проконтролировать отображение тёмных участков на снимке, но при усреднённом общем экспозамере это становится практически невозможно. В случаях, когда важно проконтролировать отображение отдельных элементов плоскости снимка, могут потребоваться другие методы экспозамера.

Зоны экспозиции

В зонной системе производится экспозамер отдельных участков кадра, и экспозиция корректируется на основе представления фотографа о том, какой именно элемент подвергается замеру: человек видит разницу между снегом и чёрной лошадью, а экспонометр - нет. По зонной системе было написано множество томов книг, но идея её очень проста: отобразить на снимке светлые участки светлыми, а тёмные - тёмными так, как они представляются фотографу в процессе визуализации.

В зонной системе для разных значений яркости присвоены номера от 0 до 9, где 0 соответствует глубокому чёрному, 5 - средне-серому (Отражение света =18 %), а 9 - чистому белому, эти значения в системе названы зонами . Чтобы сделать зоны легко отличимыми от других величин, Адамс и Арчер использовали нумерацию римскими цифрами. Строго говоря, зоны соответствуют ступеням экспозиции, и в результате Зона V экспозиции представляет на конечном изображении средне-серый тон. Каждая зона экспозиции отличается от соседней на один шаг экспозиции (то есть изменение светового потока в два раза), поэтому Зона 0 отличается от Зоны I по освещённости в два раза, и так далее. Определение экспозиции сцены особенно упрощается при использовании экспонометров, отображающих значение экспозиции (EV), так как 1 шаг значения соответствует изменению на одну зону.

Множество малоформатных и среднеформатных камер имеют средства экспокоррекции, эта функция прекрасно сочетается с зонной системой, в особенности если в камере присутствует точечный замер экспозиции, но для получения желаемых результатов требуется тщательный замер отдельных элементов кадра и внесение соответствующих поправок.

Зоны, материальный мир и отпечатки

Взаимосвязь между сценами материального мира и его отображением на отпечатке определяется характеристиками негатива и фотобумаги. Экспозиция и проявка негатива влияют на то, насколько правильно будет отображен негатив на конкретном виде фотобумаги.

Хотя зоны напрямую связаны с экспозицией, визуализация влияет на конечный результат. Чёрно-белый фотоотпечаток представляет видимый мир рядом тонов от чёрного до белого. Весь тональный набор, который может быть отображён на фотоотпечатке, может быть представлен в виде непрерывного градиента от чёрного до белого цвета:

Полный тональный градиент

На основе данного градиента зоны образуются следующими шагами:

  • Разделение тонального градиента на десять секций по возрастанию светового потока в 2 раза:

То есть, если взять за точку отсчёта светлый край нулевой зоны (значение по градации света от 0 до 1) то нулевая ступень будет иметь всего 1 градацию света, 1-я ступень (1-2) - одна градация света, 2-я ступень (2-4) - 2 градации света, 3-я ступень (4-8) - 4 градации света, 4-я ступень (8-16) - 8 градаций, 5-я ступень (16-32) - 16 градаций, 6-я ступень (32-64) − 32 градации, 7-я ступень (64-128) - 64 градации, 8-я ступень (128-256) - 128 градаций, 9-я ступень - всё что выше 256 градации. В данном случае проявляется закон Вебера - Фехнера . Иненно на этом построена техника «Высокого ключа ». При технически грамотной съёмке, всего в 3-х ступенях можно получить более 190 градаций света, тогда как в обычной фотографии снятой в 7 ступенях нельзя получить более 130 градаций света.

Примечание : Возможно, вам потребуется настроить яркость и контрастность монитора, чтобы увидеть линию разделения зон на темном участке шкалы. Десять условных тонов
  • Нумерация каждой секции римскими цифрами от 0 для черной секции до IX для белой:
Шкала зон
0 I II III IV V VI VII VIII IX

Данная публикация не является описанием уже известной зонной системы, разработанной достаточно давно американским фотохудожником Анзелом Адамсом. Также она не посвящается вопросам правильного использования экспонометров, чему уделялось внимание практически во всех фотографических учебниках и даже специально посвященных изданиях. Здесь обобщен собственный опыт автора с учетом реально проверенных возможностей различных фотоматериалов, с рассмотрения которых и целесообразно начать.

Возможности фотографического воспроизведения

При рассматривании деталей реальной картины глаз способен быстро приспосабливаться к различным яркостям. Поэтому для нас не представляет сложности сразу видеть во всех подробностях обстановку в комнате и вид за окном. Механизм образования фотоизображения несколько иной и диапазон одновременно воспринимаемых яркостей как правило не превышает всего 1:16 (что соответствует фотографической широте L=1,2). Это означает, что реальная картина может быть изображена правильно только при том условии, что самая яркая ее деталь светлее самой темной всего лишь в 16 раз. Если же что-либо окажется светлее или темнее в большей степени, то на снимке оно изобразиться как и предельно возможное светлое или темное. В зависимости от условий экспонирования сюжет с комнатой и окном, имеющий гораздо больший диапазон яркостей, может быть изображен только либо как нормальный вид комнаты при совершенно белом прямоугольнике окна, либо приемлемый вид за окном на совершенно черном фоне- все что останется от комнаты.

Следует сразу отметить, что негативные пленки могут воспринимать больший диапазон яркостей, но тогда при печати различные фрагменты негатива потребуют разной выдержки. Если же печать всей площади кадра делается в одну экспозицию, например в принтерах для экспресс- печати, то воспроизводимый диапазон также не превышает 1:16. Калибровка экспонометра

Все экспонометры, как ручные с различным углом восприятия, так и встроенные в фотоаппаратуру рассчитываются из соображений, что рекомендуемые ими параметры съемки будут правильны если измерялся некоторый средне-серый объект или же картина, которая содержит более светлых деталей приблизительно столько же сколько и более темных. Средне-серым объектом при этом считают такой, который отражает 18% падающего света, что согласно всем публикациям соответствует отражательной способности лица, тыльной стороне кисти руки и т.п.

Однако простое измерение уже демонстрирует, что отражательная способность незагорелой кожи как минимум вдвое больше. Кроме того, измерительные устройства, особенно отечественного производства часто при изготовлении настроены неточно. Любой фотограф, имеющий в своем распоряжении несколько экспонометров или полу- и автоматических фотокамер может в этом легко убедиться, определив экспозицию для некоторого одного и того же объекта, например пасмурного неба.

Поэтому каждый экспонометр прежде всего требует правильной калибровки по эталону, который всегда с собой - ладони. Для этого при некотором равномерном освещении производится измерение яркости ладони (т.е. в зону восприятия прибора ничего больше не должно попадать) и определяется экспозиция. Затем потребуется сфотографировать кисть руки ладонью к объективу с различными экспозициями с шагом полделения диафрагмы в пределах двух ступеней от рекомендованной прибором в сторону недодержек и передержек. Для такого тестирования желательно воспользоваться обращаемой пленкой (для слайдов), как наиболее критичной к точности экспонирования при условии, что процесс обработки будет строго стандартным.

Возможная ошибка экспонирования, которая определится после проявки, может компенсироваться введением в экспонометр значений светочувствительности, больших или меньших от указанных изготовителем материала в известное число раз. Некоторые экспонометрические устройства имеют возможность внесения коррекции, которую и удобно задействовать по результатам такой проверки. И, наконец, практически все устройства содержат внутри подстроечный потенциометр, регулировкой положения которого можно привести результаты измерения к требуемым. Но это требует разборки аппаратуры, что не всегда можно рекомендовать.

Имеется возможность проверить правильность калибровки. При интегральном измерении светлого пейзажа в летний полдень по ходу солнечных лучей рекомендуемая выдержка при диафрагме 16 должна составить 1/величина чувствительности пленки.

Простейшее использование экспонометра

Как новичкам, так и профессионалам можно рекомендовать несложный прием экспонометрии, который удобен и обеспечивает требуемую точность во многих случаях съемки, особенно с изображением человека. Для этого собственная ладонь помещается в те же условия освещения, что и снимаемый сюжет и для нее определяется экспозиция. Принципиально этот метод идентичен измерению падающего света ручным экспонометром с молочным светофильтром на фотоприемнике. Ошибок при таком подходе будет гораздо меньше, чем при непосредственном интегральном измерении самого сюжета, когда требуется решать, что включать в зону восприятия или какую коррекцию внести в результат измерения если фон оказывается светлее или темнее главного объекта и занимает значительную часть кадра. Съемка дублей с разной экспозицией потребуется разве что в случаях когда вы не уверены в величине чувствительности материала. Но совершенно бесполезен предложенный метод когда фотографируются объекты, которые не переотражают свет, а сами являются источником света.

Зонная система при съемке

Необходимость в зонной системе экспонометрии возникает при повышении требовательности к результатам съемки, когда беспокоит не только правильное воспроизведение средне-серых тонов, но и самых светлых и темных сюжетно важных деталей, их "укладывание" в диапазон фотографической широты.

Сущность зонной системы заключается в том, что экспозиция определяется не только для средне-серого (в некоторых случаях она может и вовсе не определяться), но и для сюжетно важных светлых и темных элементов изображения. Получив параметры съемки (выдержки или отверстия диафрагмы для некоторой выдержки) необходимые для правильного экспонирования темных, средних и светлых элементов принимается решение о требуемой для съемки выдержке или диафрагме. При этом часто приходится жертвовать правильным изображением некоторых деталей либо принимать меры для их приведения в допустимый диапазон, например за счет дополнительной подсветки. Разумеется, все это возможно, когда съемка не требует быстроты принятия решения что, например, для фотожурналистов совершенно неприемлемо.

Экспозиция, требующаяся для некоторого элемента изображения может быть определена на основе локального или точечного замера яркостей. При локальном замере экспонометр подносится достаточно близко к измеряемой поверхности, с таким расчетом, чтобы в его зону восприятия не попадало ничего лишнего. Важно, чтобы при этом в эту зону не попала тень руки или возможные блики, которые не видны с точки съемки. Для точечного измерения служат специальные приборы, у которых зона восприятия составляет всего 1-3 град. Приборы с точечным измерением позволяют выполнить все процедуры не уходя с выбранной для съемки точки. Точечные, а также другие экспонометры, у которых глазок фотодатчика невелик могут быть использованы для точечных измерений по матовому стеклу средне- и крупноформатной камеры. Выдержки при этом считываются против индекса 1,7 (между 1,4 и 2) на шкале диафрагм экспонометра при полном или даже рабочем отверстии диафрагмы. Если чувствительность прибора позволяет это сделать, то удастся избежать пересчетов при переходе к рабочему отверстию. Номинальное значение чувствительности пленки справедливо только в случае определения экспозиции для средне-серого элемента (ладонь, незагорелое лицо и т.п.). Для других элементов экспозиция определяется при скорректированном значении светочувствительности. Могут быть использованы данные следующей диаграммы:

Таким образом, для определения экспозиции в тенях в общем случае берется величина чувствительности вшестеро больше номинальной, светов - втрое ниже. Как уже отмечалось, диапазон яркостей негативной пленки может быть шире- 1:32 и даже 1:64 в случае выравнивающего проявления. Однако печать с таких негативов будет невозможна в одну экспозицию и потребует корректировки для разных фрагментов кадра.

Что выбрать в качестве самых светлых и самых темных элементов? На этот вопрос невозможно дать справедливые во всех случаях советы. Разумеется, поверхность снега, белая бумага или одежда должны изображаться на снимке как предельно светлые. Но бессмысленно пытаться вписать в допустимый диапазон яркости источников света (солнца, ламп, фонарей) и их зеркальные блики на гладких поверхностях. Также снимок будет некачественным, если на нем не будет присутствовать проработка темных деталей. Поэтому для малоконтрастных сюжетов ("в тумане") важнее всего воспроизведение самых темных элементов на границе диапазона. Но ненужно стремиться привести к этой границе темные детали освещенной ночной улицы: снимок станет напоминать снятый днем. Визуально будет совершенно нормальным если самые темные места такого снимка "утонут в черноте" и лучше сосредоточить внимание на правильном воспроизведении светов.

Итак, возможны три случая по результатам определения экспозиции в области черного, светлого, и серого.

  1. Все три экспозиции практически (с точностью до полступени) совпали. Это идеальный случай. Можно приступать к съемке если есть уверенность, что сюжетно важные светлые и темные элементы выбраны правильно.
  2. Диапазон яркостей уже, чем 1:16 ("сюжет в тумане"), т.е. выдержка для светлого получилась более чем вдвое дольше чем для темного. Приоритет здесь за экспозицией по темным деталям, иначе получится разбеленный слайд или "забитый" негатив.
  3. Диапазон яркостей больше широты материала, выдержка для темного более чем вдвое длиннее выдержки для светлого. Решение в данной ситуации требует определенного опыта. Исходя из замысла следует определить что важнее для данного снимка. Если важна проработка белой одежды или красивых облаков- выбирают экспозицию "по светлому". Если обстановка в комнате важнее вида за окном - то "по темному". Можно также пойти по пути сужения имеющегося диапазона яркостей, например за счет локальной подсветки темных деталей будущего снимка. Для снижения яркости неба служат оттененные светофильтры. Можно просто дождаться, когда за окном станет темнее.

При работе в области низких яркостей, когда выдержка может составить секунду и более потребуется также учет действия закона невзаимозаменяемости экспозиций, что потребует дополнительного увеличения выдержки. Степень такого увеличения зависит от типа материала. В среднем выдержку следует увеличивать вдвое, если определенная экспонометром величина составляет несколько секунд и в 3-4 раза, когда счет идет на десятки секунд и минуты.

Зонная система при печати

Отсутствие примеров применения зонной системы в практике определения экспозиции при печати является совершенно нелогичным. Во многих случаях печать не требует такой спешки как съемка в неожиданных ситуациях. Проведение тщательных измерений позволяет экономить дорогостоящую фотобумагу, во многих случаях затраты времени на измерения и расчеты меньше, чем на пробную печать с данного негатива. Проблемы узкого и широкого диапазона плотностей негатива здесь часто успешно решаются за счет сокращения экспозиций при печати одних фрагментов снимка и/или удлинения в других. Кроме того, ранее выпускалось промышленное устройство для фотопечати "Оптимак-ЦФ", где применимость принципа зонной экспонометрии заложена на аппаратном уровне, но, к сожалению отсутствует программная возможность расчета выдержек по результатам измерений в нескольких зонах.

Особенностью фотопечати является то, что светочувствительность бумаг строго не нормируется и сильно зависит от позитивного процесса. Поэтому пробная печать и калибровка экспонометра требуются всякий раз перед началом работы.

Негатив для пробной печати должен иметь диапазон плотностей заведомо больший, чем широта бумаги нормальной контрастности (она в данном случае всего 1:6, L=0,8). Это может быть изображение нейтрально-серой ступенчатой шкалы или некий пестрый сюжет, в котором присутствует изображение человека (достаточно незагорелого лица, руки и т.п.). На ступенчатой шкале плотности лица соответствует поле 0,40.

Пробной печатью такого негатива подбирается выдержка, когда лист после нормальной обработки дает приемлемый отпечаток. Затем проводится измерение в области плотности лица на экране увеличителя и калибруется экспонометр. Специальные экспонометры для фотопечати калибруются за счет подбора положения регулятора чувствительности, пока прибор не укажет выдержку, с которой делалась печать. Можно использовать обычные экспонометры, которые калибруются после замера путем совмещения некоторого деления шкалы диафрагм с установленной пробным путем выдержкой. В дальнейшем выдержку считывают против этого индекса. Если используются люксметры или "Оптимак-ЦФ", которые индицируют освещенность в плоскости экрана, то вычисляется архивное число, как произведение освещенности на выдержку. Новые выдержки получаются путем деления архивного числа на результат измерений. Исходя из узкого диапазона фотографической широты бумаги 1:6, экспозиция в области самого светлого (на негативе!) может быть в 4 раза больше, чем в области средне-серого и в 6 раз больше, чем в области темного:

При использовании ручных экспонометров можно соответствующим образом варьировать величину чувствительности (по данным на диаграмме) или просто помнить, что после измерений в темных областях негатива выдержку увеличить в 1,5 раза от указанной экспонометром, а после измерений в светлых областях- уменьшить в 4 раза. На диаграмме также указаны пределы при работе с мягкой бумагой (1:16). В случае же сверхконтрастных бумаг, широта которых всего 1:2, лучше отказаться от экспонометрии, поскольку нет приборов, работающих с достаточной для этого точностью. Печатать придется традиционным методом проб. Главное удобство зонной экспонометрии при печати состоит в том, что после определения выдержек для печати светлых, темных и средне-серых областей негатива не требуется решать чему отдать предпочтение как в некоторых случаях съемки. По разнице выдержек легко определить какое время прикрывания или пропечатывания потребуют те или иные области снимка. Автор имел опыт использования программируемого калькулятора для расчета выдержек и их разностей после измерений освещенности в различных точках экрана при работе с комплектом "Оптимак-ЦФ". Измерение и расчеты занимают около одной минуты, что заведомо меньше требуемого времени на получение пробы.

При переходе к значительно большим выдержкам может сказаться действие закона несовместимости экспозиций, что потребует дополнительной коррекции всех выдержек в большую сторону. Степень такой коррекции сложно учесть заранее, поскольку она находится в сильной зависимости от типа бумаги. Проблемы несложно избежать если печать (в том числе и первого пробного снимка) вести при приблизительно одинаковой освещенности на экране. В случаях небольших увеличений, при печати первой пробы и контролек освещенность может быть снижена за счет размещения в лотке увеличителя матового стекла, листов бумаги или просто дополнительным диафрагмированием объектива. При работе с "точечным" источником света в увеличителе имеется единственный способ управлять освещенностью путем регулирования напряжения на лампе. Последний путь также ведет к изменению спектрального состава излучения лампы учет которого потребует при измерениях размещения синего светофильтра перед светочувствительным элементом экспонометра.

статья предоставлена с любезного разрешения автора специально для фото-школы Е. Счастливой

Система зон была разработана американским фотографом Энзелом Адамсом (Ansel Adams), чтобы облегчить расчеты экспозиции для конкретного диапазона тонов. Тональная шкала разделяется на зоны, пронумерованные от 0 до 9. Замер экспозиции отраженного света, взятый с серой карточки или ее эквивалента внутри объекта, зарегистрирует этот участок как тон зоны 5. Увеличение или уменьшение экспозиции на одно значение диафрагмы сдвинет воспроизведение тонов по всему снимку на одну зону, вверх или вниз по шкале. Помня это, можно управлять экспозицией и запечатлеть любой тон объекта как зону 5.
Система зон основана на работе с ручным экспонометром «Уэстон» и требует жесткого контроля за условиями проявления и увеличения. Но эту систему можно применять и с другими экспонометрами, встроенными и ручными.

Замер серой карточки

Замеры освещенности серой карточки позволят сохранить нейтрально-серые тона на всех снимках. Освещенность карточки должна быть той же, что и освещенность объекта. Нейтрально-серая карточка продается фирмой «Кодак», но для этой цели подойдет любая карточка с неглянцевой поверхностью, отражающая 18% падающего света.

Шкала зон

Диапазон тонов на снимке ниже довольно велик. С помощью замера серой карточки их удалось воспроизвести, как величины шкалы слева. Для большинства объектов такая общая передача деталей вполне приемлема. Замеры экспонометра дают именно такие результаты. Но иногда при печати желательно ослабить тени изображения, для чего уменьшается время экспонирования, или приглушить яркость световых пятен, тогда время экспонирования увеличивается. Увеличение экспозиции на одно деление диафрагмы сдвигает все тона на снимке по шкале на единицу. Зоны объекта 4 и 5 станут соответственно 5 и 6 и так далее, в теневой зоне получается больше деталей, в зоне световых пятен - меньше. При уменьшении времени экспонирования все происходит наоборот.
Чтобы применять систему зон, надо в совершенстве освоить процессы обработки и печати и добиться воспроизведения всех частей объекта с широким диапазоном тонов.

Выбор зон

Суть системы зон в том, чтобы «выявить» одну тональную величину путем тщательного замера экспозиции, остальные же тона в случае необходимости «дотянуть» при проявлении. Снимок внизу слева получился в результате общего замера экспозиции и нормального проявления. Затененное лицо девушки воспроизводилось как зона 2 на шкале зон, все детали потеряны. На соседнем снимке замер был сделан около лица.
Стало ясно, что требуется экспозиция на три деления диафрагмы больше, тогда лицо попадает в зону 5. Более светлый фон перешел в основном в зону 8 и переэкспонирован. Детали фона можно улучшить, если недо-проявить негатив, тогда вся тональная шкала будет сжатой и фон передвинется в зону 7 или 6.

Расчет экспозиции по нескольким точкам замера

При съемке фотографу всегда приходится решать задачу установки правильной экспозиции. Это связано с тем, что фотоматериалы могут передавать только ограниченный диапазон яркостей, причем у фотобумаги он уже чем у фотопленки (кстати этим и объясняется, то что незначительные ошибки на пленке легко исправляются при печати на фотобумаге).
Использование теории Адамса значительно упрощает выбор экспозиции для сложных условий освещения.
По этой теории любой освещенный объект можно разбить на 10 зон или ступеней от самого яркого до самого темного. Переход от одной ступени к другой соответствует одной ступени экспозиции (т.е. изменению ее в 2 раза) и тона воспроизводятся на обычной пленке пропорционально, т.е. если один из тонов воспроизведен верно, то все остальные будут располагаться в соответствующем относительно друг друга порядке. Ниже условно описаны эти ступени:

0 Абсолютно черный тон: очень глубокие тени; практически не освещенные участки; проемы в темные помещения (окна, двери), фотографируемые из ярко освещенного пространства.
1 Самые темные тона, близкие к черному: глубокая тень - без деталей, но не совсем черная; допустимы искажения цвета на цветной фотографии.
2 Появление первых признаков деталей в тенях: черный мех, детали черной одежды, деревьев и т.д..; допустимо искажение цвета на цветной фотографии.
3 Не совсем черный: умеренно темные тона на одежде, волосах, коре деревьев; темный хвойный лес; темная листва.
4 Средняя по плотности тень при солнечном освещении в ясный день: нормальная листва; сильно загорелая кожа, зеленая мокрая трава.
5 Стандартный серый тон (отражательная способность 18%): тень в солнечный день при легкой дымке; нормальный загар или слегка потемневшая кожа; зеленая трава в сухую погоду.
6 Светлая незагорелая кожа; чистое синее небо; строения из белого кирпича; газетный лист с текстом.
7 Светло-серые, серебристые, бледно-желтые, зеленые, кремовые тона: последние признаки цвета ("белесость") на цветной пленке; машинописная страница на белой бумаге.
8 Белый тон с минимумом деталей: вышивка на белой одежде, подвенечное платье и т.д.
9 Совершенно белый тон без деталей: сильные источники света; залитый солнцем белый фон; блики солнца от воды и зеркальных поверхностей.

При выборе экспозиции главное определить наиболее важный для воспроизведения тон, остальные тона в обе стороны от основного так же будут правильно воспроизведены в пределах диапазона передаваемых фотоматериалом яркостей.
Большинство экспонометров калибруются из расчета отражения поверхностью 18% света, что соответствует пятой зоне. Внизу приведен рисунок квадрата с примерно такой отражающей способностью, если его распечатать на бумаге.

Поскольку экспонометр не способен определить отражающую способность поверхности, то результат при таком измерении должен получаться среднесерым как при съемке белых так и черных поверхностей. При недоэкспозиции изображение становится более темным, а при переэкспозиции более светлым. Если снимать по показаниям экспонометра, то значит мы относим изображение к пятой зоне.
При съемке на негативную пленку светлые объекты получаются темными, а темные светлыми. Если затем распечатать изображение на фотобумаге и замерить экспонометром экспозицию от самых светлых и самых темных участков, то разница получится в пределах 4-5EV.

Пример соотношения номеров зон и плотности негатива

Негатив хорошо передает детали в пределах плотностей 0,34 - 0, 97, т.е. в пределах примерно пяти- шести зон. На более светлых или более темных участках детали будут уже плохо различимы.
Например при съемке в лесу мы хотим, чтобы хорошо проработались детали коры почти черного дерева - это соответствует 2 зоне. При установке экспозиции по этим участкам у нас проработаются детали с нулевой по четвертую зону, т.е. все зоны выше четвертой будут выглядеть белыми. Поэтому желательно изменить экспозицию на две ступени от измеренной, до четвертой зоны, тогда правильно будут экспонированы все детали со второй по шестую зону, т.е. даже относительно светлые детали будут иметь прорисовку тонов.
Рассмотрим вышеописанный пример с приведением конкретных цифр: съемка дерева на снежном фоне. Результаты замера дали нам следующие результаты:

В случае, если диапазон яркостей не перекрывает 6 ступеней, то достаточно взять среднее значение, в противном случае придется жертвовать либо деталями в тенях, либо деталями в светах.
Для упрощения расчетов надо хорошо помнить или иметь под рукой шкалу изменения диафрагм:

f1.4 f2 f2.8
f4
f5.6
f8
f11
f16
f22
f32
f45

Замеряем экспозицию в тенях и принимаем ее за точку отсчета:

f1.4 f2 f2.8
f4
f5.6
f8
f11
f16
f22
f32
f45
0 тени

Замеряем экспозицию в светах и считаем количество ступеней между ними:

f1.4 f2 f2.8
f4
f5.6
f8
f11
f16
f22
f32
f45
0 тени
1 2 3 4 5 света

В данном случае это пять ступеней и для того, чтобы хорошо проработались и света и тени можно взять либо f11 либо f16, т.е. сделать экспокоррекцию +2 или +3 относительно замеренной по теням.

До появления системы EOS большинство популярных систем экспозамера использовали центровзвешенный алгоритм. Таким образом, самое большое влияние на экспозицию кадра оказывала его центральная часть - то, что оказывалось в центре видоискателя. Такой подход более-менее работал в случаях, когда центральный объект съёмки был освещён спереди, но совершенно не подходил в сложных ситуациях.
Главная цель оценочного экспозамера - справиться с этими проблемами. Впервые она появилась вместе с EOS 650 - как раз в 1987г, когда появилась сама система EOS. С тех пор этой системой оборудуется каждая камера EOS.
Принцип работы системы довольно прост. Кадр (то, что вы видите в видоискателе) делится на некоторое количество зон - у каждой зоны есть свой сенсор. Перед тем, как камера выберет экспозицию, с каждого сенсора считывается его показание. Далее эти показания анализируются центральным компьютером камеры, который определяет тип освещения сюжета и в случае необходимости применяет компенсацию экспозиции.

Как это работает
Система оценочного экспозамера непрерывно эволюционировала, начиная со своего дебюта в EOS 650. Там было целых шесть зон и, соответственно, шесть сенсоров. В последних моделях камер EOS применяется до 35 сенсоров. Как бы то ни было, изучение системы легче начать с EOS 650.
На иллюстрации сверху можно видеть расположение шести зон экспозамера. Вы видите основную зону (круг в центре), вторичную зону (круг вокруг центра), а также периферийную зону, разделённую на четыре части. Когда вы нажимаете кнопку спуска затвора, камера сначала фокусируется, а затем производится чтение показаний шести датчиков экспозиции - со всех шести зон. Далее эта информация передаётся в центральный процессор камеры. Он оценивает яркость (освещённость) каждой зоны и с помощью специального алгоритма устанавливает подходящие параметры экспозиции.
Алгоритм - это набор инструкций для решения задачи. В камере EOS 650 алгоритм сравнивает разницу в яркости между различными зонами, чтобы оценить освещение, а также оценить размер основного объекта съёмки.
Система также принимает во внимание яркость основного объекта съёмки - если яркость высока, экспозиция смещается в сторону светлых областей, а если низка - в сторону тёмных.
Всё это, конечно, звучит довольно сложно, но всё сразу станет понятно, когда мы дойдём до примеров.

Основная зона
Область в кадре, покрываемая основной зоной, варьируется довольно значительно - в зависимости от камеры. Она может быть очень большой - 9.5% изображения в видоискателе, а может быть и маленькой - 2.4% (см. таблицу параметров камер).
Чем больше основная зона, тем она даёт более общую оценку экспозиции, так что, с одной стороны, вам не нужно очень уж сильно беспокоиться о съёмке объекта, который попал в эту зону. Да, возможно, экспозиция будет не самой идеальной, но негативная плёнка вам всё простит (у неё большая широтная характеристика). Камеры EOS, рассчитанные на новичков, обладают большой основной зоной.
По мере того, как уменьшается основная зона, нужно быть более осторожным при экспозамере объекта, попадающего в основную зону - особенно при использовании слайдов (их широта намного более ограничена). Замеры по нескольким областям одного и того же объекта могут различаться на несколько ступеней. К примеру, при фотографировании свадьбы нужно иметь в виду, что активная точка фокусировки (и, соответственно, основная точка экспозамера) находится на лице невесты, а не на её белом платье.
Маленькие основные зоны можно увидеть в камерах EOS, рассчитанных на профессионалов и энтузиастов. При съёмке этими камерами подразумевается, что у вас есть как минимум базовые понятия о принципах экспозамера.
Разница в размерах основной зоны - практически единственная причина, по которой две различные камеры, снимающие один и тот же сюжет, дают разницу в экспозиции.

Как обуздать оценочный экспозамер
Одной из проблем работы с оценочным экспозамером является то, что вы никогда не знаете в точности, как он себя ведёт. С помощью базы данных по огромному количеству сочетаний яркости основной, вторичной и периферийных зон камера может устанавливать автоматическую компенсацию экспозиции практически для любых ситуаций. Но правильно ли она это делает?
В большинстве случаев можно ответить "да". Оценочный экспозамер, особенно в последних моделях, справляется практически со всеми ситуациями удивительно хорошо. Тем не менее, бывают ситуации, которые могут "обмануть" систему, и бывают ситуации, в которых вы можете захотеть установить экспозицию вручную, чтобы добиться какого-либо эффекта.
Никогда не пытайтесь корректировать экспозицию в таких ситуациях. Причина очень проста - вы никогда не знаете, какую компенсацию применила, и применила ли вообще камера, основываясь на показаниях центральной зоны. А если вы не знаете этого, то как вы можете знать, какая дополнительная компенсация требуется, если требуется вообще?
Если вы не уверены в оценочном экспозамере сюжета, переключитесь в другой режим экспозамера. Это можно сделать практически на всех, за исключением самых простейших, моделях камер EOS (см. таблицу функциональности).
Центровзвешенный экспозамер - хорошая штука. Он использовался на многих камерах Canon ещё тогда, когда не было системы EOS. Как и следует из названия, основное влияние на экспозамер оказывает центральная часть кадра, но и остальные зоны тоже не упускаются из вида. В принципе, это и есть одна из простейших форм оценочного экспозамера, но не стоит полагаться на неё во всех ситуациях - лучше применять дополнительную компенсацию, если ваш объект съёмки очень тёмный или очень яркий.
Как бы то ни было, если вы хотите контролировать весь процесс с большой точностью, пользуйтесь частичным экспозамером. В этом режиме считываются показания лишь центральной области - показания внешних областей в учёт не принимаются. Соответственно, если вы понимаете, что делаете, то можете применить компенсацию, точно соответствующую снимаемому сюжету.
И в качестве последнего профессионального средства идёт точечный экспозамер. Он почти не отличается от частичного, только замер производится по самой центральной части (обычно в районе 2-3% кадра). Это самый точный способ экспозамера, который только можно придумать - но, естественно, он может привести к поистине чудовищным ошибкам, если вы производите замер по неподходящей области вашего сюжета.

Компенсация экспозиции
Как понять, требуется ли компенсация экспозиции? В принципе, в большинстве случаев всё оказывается довольно просто.
Экспонометры, производящие измерения по отражённому свету, калиброваны так, чтобы давать правильные показания, когда основной объект съёмки имеет коэффициент отражения света 18%. Если же он светлее или темнее, то в результате замера вы получите значения, при которых экспозиция будет неправильной.
Оценочный экспозамер в какой-то мере справляется с этой проблемой, анализируя основной объект съёмки, если его покрывают сразу несколько зон экспозамера, но и этот способ не даёт 100% гарантии правильной экспозиции.
К счастью, при съёмке большинства сюжетов всё-таки удаётся найти тот самый требуемый серый (18%) тон. Но, если вы фотографируете пейзаж, полный белого снега, или пляж, полный песка, то система экспозамера решит, что она видит тот самый средний серый сюжет, только в очень ярком освещении - и, соответственно, уменьшит экспозицию. В результате кадр получится недодержанным. Нужно прибавлять одну-две ступени к показаниям экспозамера при фотографировании сюжетов, по большей части состоящих из светлых тонов.
При съёмке тёмных сюжетов экспозамер подвержен тому же самому - он решит, что вы снимаете серый сюжет в очень плохом освещении, и увеличит экспозицию. Результат - передержка. При съёмке тёмных сюжетов экспозицию нужно уменьшать - обычно на одну-две ступени.

Что в итоге
Всегда используйте частичный или точечный экспозамер, если вы собираетесь применять компенсацию экспозиции при съёмке очень ярких или очень тёмных сюжетов.
Никогда не применяйте компенсацию экспозиции к результатам оценочного экспозамера, так как вы не знаете, какую компенсацию уже применила сама камера.

Анализируем шесть зон
Как EOS 650 понимает, что нужно делать с результатами, полученными с шести зон экспозамера?
Камера сравнивает разницу в яркости между различными зонами, после чего использует специальный алгоритм, чтобы придти к 9 различным выводам.

Буквы A, B и C обозначают основную, вторичную и периферийные зоны, как показано на иллюстрации. При разборе различных ситуаций 4 периферийные зоны экспозамера (C1, C2, C3, C4) объединены в одну - C.

Давайте рассмотрим пример анализа, производимого камерой. Возьмём для примера ситуацию "B-A=0, C-B>0". Если в результате вычитания показания зоны A экспозамера из показания зоны B у нас получается ноль, то это означает, что показания этих зон одинаковы. Далее, если при вычитании показания B из показания C мы получаем значение, большее нуля, то это означает, что в зону С попала часть сюжета более яркая, чем попавшая в B.

Практическая ценность
Конечно, вам не нужно производить все эти вычисления каждый раз, когда вы снимаете камерой EOS. Основной смысл оценочного экспозамера как раз в том, что все вычисления производятся внутри камеры, а вы можете сконцентрироваться на композиции кадра. Тем не менее, ни одна из систем экспозамера не обладает 100% эффективностью, так что знания о том, как система функционирует, помогут вам понять, почему при съёмке некоторых объектов получаются довольно неожиданные результаты.
Со временем вы сможете видеть такие сюжеты - и переключаться с оценочного экспозамера на режимы, которые помогут вам получить правильную экспозицию в сложных условиях. Для большинства фотографов "сложные" сюжеты составляют не более 10% от общего количества.

Ситуация 1


Формула: B-A=0, C-B=0. Яркость объекта съёмки практически одинакова по всем зонам.
Типичный кадр: всё освещено спереди, либо сюжет полностью состоит из тёмных (или светлых) объектов.
Яркость одинакова по всей площади кадра, так что камере не нужно применять никакую компенсацию.

Ситуация 2


Формула: B-A=0, C-B>0. Яркость основной зоны примерно такая же, как и яркость вторичной. Периферийная зона ярче, чем центральные.
Типичный кадр: довольно большой центральный объект съёмки, освещённый сзади, либо сам объект съёмк и преимущественно тёмных тонов.

Ситуация 3


Формула: B-A>0, C-B>0. Вторичная зона ярче основной, а периферийная ярче вторичной.
Типичный кадр: примерно как во второй ситуации, только основной объект съёмки меньше.

Ситуация 4


Формула: B-A>0, C-B=0. Вторичная зона ярче основной, а периферийная зона не отличается по яркости от вторичной.
Типичный кадр: примерно как во второй ситуации, только основной объект съёмки меньше, чем основная зона.
Камера установит экспозицию соответственно яркости основной зоны. Однако, если объект съёмки значительно меньше основной зоны, то яркий фон повлияет на экспозицию, что может привести к недодержке основного объекта съёмки.

Ситуация 5


Формула: B-A>0, C-B<0. Вторичная зона ярче основной и периферийной.
Типичный кадр: большие объекты со сложным освещением (довольно редкая ситуация), либо во вторичную зону попадает солнце.
Яркий источник света, находящийся в стороне от центра, может привести к недодержке основного объекта съёмки.

Ситуация 6


Формула: B-A=0, C-B<0. Яркость основной и вторичной зон одинакова, а периферийная зона темнее центра.
Типичный кадр: основной объект съёмки занимает довольно большую площадь в кадре и хорошо освещён, а фон темнее его.
Камера установит экспозицию соответственно яркости центральных зон.

Ситуация 7


Формула: B-A<0, C-B<0. Основная зона ярче вторичной, а вторичная ярче периферийной.
Типичный кадр: примерно как в шестой ситуации, только основной объект съёмки меньше.
Камера установит экспозицию соответственно яркости основной зоны.

Ситуация 8


Формула: B-A<0, C-B=0. Основная зона ярче вторичной, а вторичная не отличается по яркости от периферийной.
Типичный кадр: примерно как в седьмой ситуации, только основной объект съёмки ещё меньше.
Камера установит экспозицию соответственно яркости основной зоны. Если объект съёмки значительно меньше основной зоны, то это может привести к небольшой передержке основного объекта съёмки.

Ситуация 9


Формула: B-A<0, C-B>0. Яркость вторичной зоны меньше, чем яркость основной и периферийной зон.
Типичный кадр: во вторичной зоне присутствует довольно тёмный объект, либо основной объект съёмки очень велик и сложно освещён (редкие случаи).
Камера установит экспозицию соответственно яркости основной зоны.

Выводы
Как можно видеть из приведённых примеров, основная зона играет важнейшую роль в определении экспозиции. Если объект, попадающий в основную зону, имеет коэффициент отражения света 18%, оценочный экспозамер даст правильный результат. Если объект освещён сзади, камера применит компенсацию экспозиции.
Однако, если тон основного объекта съёмки очень яркий или очень тёмный, вы можете получить неправильную экспозицию и в этом случае вам необходимо самостоятельно внести компенсацию. Либо вы можете использовать частичный или точечный режим экспозамера (если ваша камера позволяет это сделать).
Из этих примеров также видно, что размер основного объекта съёмки в кадре имеет значительное влияние на точность оценочного экспозамера.
Камеры, разработанные для профессионалов и энтузиастов, обычно имеют довольно небольшую основную зону - предполагается, что их владельцы хорошо понимают принципы экспозамера. Модели, разработанные для фотографов, не обладающих таким опытом, имеют большую основную зону, так как с ней сложнее ошибиться.

Многоточечная фокусировка
Разбираться в системе оценочного экспозамера проще всего именно на примере EOS 650, так как в ней всего лишь шесть зон и камера всегда фокусируется на объект, находящийся в центральной части видоискателя (т.н. одноточечная фокусировка).
Спустя три года, в 1990м, система немного усложнилась с выходом EOS 10. Тогда впервые была представлена система многоточечной фокусировки. На фокусировочном экране показываются три отметки. Объектив способен сфокусироваться на объекте, находящемся на любой из этих отметок.
Вы можете предоставить камере самой решать, на какой точке сфокусироваться - она сама выбирает точку, находящуюся ближе всего к камере. Либо вы сами можете выбрать точку фокусировки вручную - очень полезная функция при съёмке объектов, находящихся не по центру, а также не самых близких к камере.
Однако, хитрость в том, что зоны экспозамера "двигаются" вместе с точкой фокусировки. Соответственно, основная зона всегда находится под выбранной точкой фокусировки, даже если эта точка слева или справа от центра.
На самом деле, конечно, зоны экспозамера никуда не двигаются. Просто камера берёт значения из других зон. К примеру, в сенсоре EOS 10 целых 8 зон - на две больше, чем у EOS 650. Центральная зона EOS 650 превращается в три центральные зоны EOS 10. Каждая из них может, в зависимости от выбранной точки фокусировки, стать основной или вторичной зоной. Остальные вторичные и периферийные зоны работают как обычно.
Всё это означает, что камера по-прежнему способна справиться с объектами съёмки, освещёнными сзади - даже в тех случаях, когда они находятся не в центре.
Canon называет эту систему AIM (Advanced Integrated Multi-point Control) потому, что она объединяет системы фокусировки и экспозамера. Помимо этого, она также связывает их с системой экспозамера вспышки, но это уже совершенно другая история.

Примеры структур экспозамера
На этих иллюстрациях показано, как перемещаются зоны экспозамера в процессе выбора фокусировочных точек. Для EOS 3 и EOS 300 показаны, естественно, не все возможные комбинации. Как бы то ни было, структуры зон экспозамера для правых и левых точек фокусировки абсолютно зеркальны.
Запоминать все эти структуры совершенно необязательно, хотя понять принцип довольно легко.

6-зонный экспозамер с одной точкой фокусировки


Оценочный замер ещё более упростился в 1000й серии камер EOS. Этот подход очень помог сбить цену, так как эти камеры были рассчитаны на самых начинающих фотографов.
Основная зона была увеличена до 9.5% - это помогло уменьшить ошибки экспозамера при съёмке объектов, находящихся не по центру. Вторичная зона осталась такой же, как и у EOS 650, но четыре периферийных зоны были объединены в одну.

8-зонный экспозамер с 3 точками фокусировки


Камера EOS 10 была первой моделью с многоточечной фокусировкой и системой AIM. Структура экспозамера в принципе такая же, как и у EOS 650, но центральная часть поделена на три зоны, в которых размещаются три точки фокусировки - именно активная точка оказывает наибольшее влияние на экспозицию.
Кроме того, центральная зона может быть как основной, так и вторичной - в зависимости от того, какая точка фокусировки выбрана. Каждая из трёх центральных зон покрывает 8.5% площади кадра. Основная центральная зона используется для частичного экспозамера.

16-зонный экспозамер с 5 точками фокусировки


В камере EOS 5, появившейся в 1992, число точек фокусировки увеличилось до пяти. Соответственно, это означало, что и число зон экспозамера тоже должно было увеличиться, чтобы структура экспозамера могла соответствовать активной точке фокусировки. Одно из следствий этого - каждая из пяти центральных зон покрывает лишь 3.5% площади кадра. Средняя зона используется для точечного экспозамера.
В камерах EOS 1N и EOS 1RS использовалась точно такая же система.

6-зонный экспозамер с 3 точками фокусировки


С выходом камеры EOS 500 структура экспозамера опять вернулась к 6 зонам, но, в отличие от EOS 650, её нужно было связать с тремя точками фокусировки. Соответственно, это означало, что требуются три центральных зоны. Как и в 1000й серии камер EOS, тут только одна периферийная зона, но вторичная зона разбита на две области. Центральная и вторичная зоны могут играть роль вторичной и периферийной - в зависимости от выбранной точки фокусировки. Заметьте, что, когда выбрана центральная точка фокусировки, структура экспозамера становится похожа на используемую в EOS 650. Центральная зона покрывает 9.5% площади кадра - таким образом избегаются значительные ошибки экспозамера - идеальный вариант для начинающих.

35-зонный экспозамер с 7 точками фокусировки


EOS 300 стала первой моделью, использующей 35-зонный экспозамер. Зоны представляют собой простую решётку 7x5. Такое расположение обеспечивает достаточную гибкость для экспозамера по семи фокусировочным точкам - основная, вторичная и периферийные зоны могут изменяться в зависимости от активной точки фокусировки.
Чтобы увеличить точность экспозамера, "вес" некоторых клеток, входящих во вторичную зону, уменьшен до 50% - на иллюстрации видно, что они разделены на вторичный и периферийный сегменты. Кроме того, можно видеть, что некоторые зоны вообще не участвуют в экспозамере - в каждом случае задействованы только 25 зон.
Основная зона экспозамера покрывает 9.5% площади кадра.

21-зонный экспозамер с 45 точками фокусировки


EOS 3 - первая камера, где количество зон экспозамера меньше количества точек фокусировки. Всего есть 45 точек фокусировки и совершенно нереально, да и не нужно связывать каждую из точек со своей собственной центральной зоной. Фактически есть 15 точек фокусировки, связанных со своими "персональными" зонами экспозамера.
Если у активной точки фокусировки нет "своей" зоны экспозамера, в качестве основной камера автоматически выбирает ближайшую зону, дающую наименьшее показание (ту, в которую попадает более тёмная часть объекта съёмки). Таким образом, при выборе некоторых точек фокусировки камера перебирает до трёх вариантов основной зоны.
В камере EOS 3 есть функция CF 13-2, ограничивающая количество точек фокусировки одиннадцатью. Таким образом, каждая из них становится однозначно связана со своей зоной экспозамера. Эта функция специально сделана для работы в режиме точечного экспозамера, хотя она также полезна, когда вы хотите точно знать, какая зона стала основной при экспозамере.
Основная зона покрывает всего лишь 2.4% площади кадра.

Если вы поменяли камеру
Когда вы заменяете одну вашу камеру EOS на другую, не ожидайте, что вы будете получать точно такие же результаты, к которым привыкли. Сделайте тестовую серию кадров (в случае работы с плёнкой можно даже израсходовать целую катушку) в режимах Program или Full Auto, используя самые различные сюжеты. Если в камере есть многоточечная фокусировка, сделайте несколько кадров с фокусировкой не по центру. Сравните полученные результаты, чтобы понять, в каких ситуациях экспозиция получилась идеальной, а в каких требуется компенсация. Не думайте, что в каждой ситуации камера сама получит идеальную экспозицию.

Ручная фокусировка
Если вы переключаете объектив в режим ручной фокусировки (AF -> MF), в качестве основной зоны экспозамера камера будет использовать центральную. Это происходит потому, что в этом случае камера не может определить расположение основного объекта съёмки в кадре. В случае ручной фокусировки при работе с камерами с единственной точкой фокусировки нет практически никакой разницы, но при работе с многоточечными моделями могут наблюдаться некоторые вариации. Больше всего это может проявиться при использовании слайдовой плёнки.

Постоянная фокусировка
Будьте осторожны при использовании объективов с функцией постоянной фокусировки (Full Time Mechanical Manual Focusing). Вы можете в любой момент скорректировать автоматическую фокусировку простым поворотом кольца - без необходимости переключаться в ручной (MF) режим. камера произведёт экспозамер сразу после того, как объектив сфокусируется. Если после этого вы вручную сфокусируетесь на другой области, экспозиция может стать некорректной.

Профессиональные модели
Камеры EOS 1N, 1N RS, 1V, 3 и 5 разработаны для использования профессионалами и энтузиастами. Система экспозамера в них запрограммирована с расчётом на то, что у вас есть основательное понимание принципов экспозамера. Как минимум, вы должны самостоятельно определять ситуации, когда следует переключиться из оценочного экспозамера в другой режим.
Именно по этой причине не стоит думать, что профессиональные модели сами по себе позволят вам получить лучшую экспозицию по сравнению с более дешёвыми камерами. У профессиональных моделей есть потенциал для получения лучших результатов, но вам нужно уметь им воспользоваться.