Определение среднего значения, вариации и формы распределения. Описательные статистики

Большое распространение в статистике имеют средние величины. Средние величины характеризуют качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др.

Средняя - это один из распространенных приемов обобщений. Правильное понимание сущности средней определяет ее особую значимость в условиях рыночной экономики, когда средняя через единичное и случайное позволяет выявить общее и необходимое, выявить тенденцию закономерностей экономического развития.

Средняя величина - это обобщающие показатели, в которых находят выражение действия общих условий, закономерностей изучаемого явления.

Статистические средние рассчитываются на основе массовых данных правильно статистически организованного массового наблюдения (сплошного и выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Например, если рассчитывать среднюю заработную плату в кооперативах и на госпредприятиях, а результат распространить на всю совокупность, то средняя фиктивна, так как рассчитана по неоднородной совокупности, и такая средняя теряет всякий смысл.

При помощи средней происходит как бы сглаживание различий в величине признака, которые возникают по тем или иным причинам у отдельных единиц наблюдения.

Например, средняя выработка продавца зависит от многих причин: квалификации, стажа, возраста, формы обслуживания, здоровья и т.д.

Средняя выработка отражает общее свойство всей совокупности.

Средняя величина является отражением значений изучаемого признака, следовательно, измеряется в той же размерности, что и этот признак.

Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному признаку. Чтобы получить полное и всестороннее представление об изучаемой совокупности по ряду существенных признаков, в целом необходимо располагать системой средних величин, которые могут описать явление с разных сторон.

Существуют различные средние:

    средняя арифметическая;

    средняя геометрическая;

    средняя гармоническая;

    средняя квадратическая;

    средняя хронологическая.

Рассмотрим некоторые виды средних, которые наиболее часто используются в статистике.

Средняя арифметическая

Средняя арифметическая простая (невзвешенная) равна сумме отдельных значений признака, деленной на число этих значений.

Отдельные значения признака называют вариантами и обозначают через х (); число единиц совокупности обозначают через n, среднее значение признака - через. Следовательно, средняя арифметическая простая равна:

По данным дискретного ряда распределения видно, что одни и те же значения признака (варианты) повторяются несколько раз. Так, варианта х встречается в совокупности 2 раза, а варианта х-16 раз и т.д.

Число одинаковых значений признака в рядах распределения называется частотой или весом и обозначается символом n.

Вычислим среднюю заработную плату одного рабочего в руб.:

Фонд заработной платы по каждой группе рабочих равен произведению варианты на частоту, а сумма этих произведений дает общий фонд заработной платы всех рабочих.

В соответствии с этим, расчеты можно представить в общем виде:

Полученная формула называется средней арифметической взвешенной.

Статистический материал в результате обработки может быть представлен не только в виде дискретных рядов распределения, но и в виде интервальных вариационных рядов с закрытыми или открытыми интервалами.

Исчисление средней по сгруппированным данным производится по формуле средней арифметической взвешенной:

В практике экономической статистики иногда приходится исчислять среднюю по групповым средним или по средним отдельных частей совокупности (частным средним). В таких случаях за варианты (х) принимаются групповые или частные средние, на основании которых исчисляется общая средняя как обычная средняя арифметическая взвешенная.

Основные свойства средней арифметической .

Средняя арифметическая обладает рядом свойств:

1. От уменьшения или увеличения частот каждого значения признака х в п раз величина средней арифметической не изменится.

Если все частоты разделить или умножить на какое-либо число, то величина средней не изменится.

2. Общий множитель индивидуальных значений признака может быть вынесен за знак средней:

3. Средняя суммы (разности) двух или нескольких величин равна сумме (разности) их средних:

4. Если х = с, где с - постоянная величина, то
.

5. Сумма отклонений значений признака Х от средней арифметической х равна нулю:

Средняя гармоническая.

Наряду со средней арифметической, в статистике применяется средняя гармоническая величина, обратная средней арифметической из обратных значений признака. Как и средняя арифметическая, она может быть простой и взвешенной.

Характеристиками вариационных рядов, наряду со средними, являются мода и медиана.

Мода - это величина признака (варианта), наиболее часто повторяющаяся в изучаемой совокупности. Для дискретных рядов распределения модой будет значение варианта с наибольшей частотой.

Для интервальных рядов распределения с равными интервалами мода определяется по формуле:

где
- начальное значение интервала, содержащего моду;

- величина модального интервала;

- частота модального интервала;

- частота интервала, предшествующего модальному;

- частота интервала, следующего за модальным.

Медиана - это варианта, расположенная в середине вариационного ряда. Если ряд распределения дискретный и имеет нечетное число членов, то медианой будет варианта, находящаяся в середине упорядоченного ряда (упорядоченный ряд - это расположение единиц совокупности в возрастающем или убывающем порядке).

В математике среднее арифметическое значение чисел (или просто среднее) - это сумма всех чисел в данном наборе, разделенная на их количество. Это наиболее обобщенное и распространенное понятие средней величины. Как вы уже поняли, чтобы найти среднее значение, нужно суммировать все данные вам числа, а полученный результат разделить на количество слагаемых.

Что такое среднее арифметическое?

Давайте рассмотрим пример.

Пример 1 . Даны числа: 6, 7, 11. Нужно найти их среднее значение.

Решение.

Для начала найдем сумму всех данных чисел.

Теперь разделим получившуюся сумму на количество слагаемых. Так как у нас слагаемых три, соответственно, мы будем делить на три.

Следовательно, среднее значение чисел 6, 7 и 11 - это 8. Почему именно 8? Да потому, что сумма 6, 7 и 11 будет такая же, как трех восьмерок. Это отлично видно на иллюстрации.

Среднее значение чем-то напоминает «выравнивание» ряда чисел. Как видите, кучки карандашей стали одного уровня.

Рассмотрим еще один пример, чтобы закрепить полученные знания.

Пример 2. Даны числа: 3, 7, 5, 13, 20, 23, 39, 23, 40, 23, 14, 12, 56, 23, 29. Нужно найти их среднее арифметическое значение.

Решение.

Находим сумму.

3 + 7 + 5 + 13 + 20 + 23 + 39 + 23 + 40 + 23 + 14 + 12 + 56 + 23 + 29 = 330

Делим на количество слагаемых (в этом случае - 15).

Следовательно, среднее значение данного ряда чисел равно 22.

Теперь рассмотрим отрицательные числа. Вспомним, как их суммировать. Например, у вас есть два числа 1 и -4. Найдем их сумму.

1 + (-4) = 1 – 4 = -3

Зная это, рассмотрим еще один пример.

Пример 3. Найти среднее значение ряда чисел: 3, -7, 5, 13, -2.

Решение.

Находим сумму чисел.

3 + (-7) + 5 + 13 + (-2) = 12

Так как слагаемых 5, разделим получившуюся сумму на 5.

Следовательно, среднее арифметическое значение чисел 3, -7, 5, 13, -2 равно 2,4.

В наше время технологического прогресса гораздо удобнее использовать для нахождения среднего значения компьютерные программы. Microsoft Office Excel - одна из них. Искать среднее значение в Excel быстро и просто. Тем более, эта программа входит в пакет программ от Microsoft Office. Рассмотрим краткую инструкцию, как найти среднее арифметическое значение с помощью этой программы.

Для того чтобы посчитать среднее значение ряда чисел, необходимо использовать функцию AVERAGE. Синтаксис для этой функции:
= Average (argument1, argument2, ... argument255)
где argument1, argument2, ... argument255 - это либо числа, либо ссылки на ячейки (под ячейками подразумеваются диапазоны и массивы).

Чтобы было более понятно, опробуем полученные знания.

  1. Введите числа 11, 12, 13, 14, 15, 16 в ячейки С1 – С6.
  2. Выделите ячейку С7, нажав на нее. В этой ячейке у нас будет отображаться среднее значение.
  3. Щелкните на вкладке «Формулы».
  4. Выберите More Functions > Statistical для того, чтобы открыть выпадающий список.
  5. Выберите AVERAGE. После этого должно открыться диалоговое окно.
  6. Выделите и перетащите туда ячейки С1–С6, чтобы задать диапазон в диалоговом окне.
  7. Подтвердите свои действия клавишей «ОК».
  8. Если вы все сделали правильно, в ячейке С7 у вас должен появиться ответ – 13,7. При нажатии на ячейку C7 функция (= Average (C1: C6)) будет отображаться в строке формул.

Очень удобно использовать эту функцию для ведения учета, накладных или когда вам просто нужно найти среднее значение из очень длинного ряда чисел. Поэтому ее часто используют в офисах и крупных компаниях. Это позволяет сохранять порядок в записях и дает возможность быстро посчитать что-либо (например, средний доход за месяц). Также с помощью Excel можно найти среднее значение функции.

Среднее арифметическое

У этого термина существуют и другие значения, см. среднее значение.

Сре́днее арифмети́ческое (в математике и статистике) множества чисел - сумма всех чисел, делённая на их количество. Является одной из наиболее распространённых мер центральной тенденции.

Предложена (наряду со средним геометрическим и средним гармоническим) ещё пифагорейцами.

Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).

Введение

Обозначим множество данных X = (x 1 , x 2 , …, x n ), тогда выборочное среднее обычно обозначается горизонтальной чертой над переменной (x ¯ {\displaystyle {\bar {x}}} , произносится «x с чертой»).

Для обозначения среднего арифметического всей совокупности используется греческая буква μ. Для случайной величины, для которой определено среднее значение, μ есть вероятностное среднее или математическое ожидание случайной величины. Если множество X является совокупностью случайных чисел с вероятностным средним μ, тогда для любой выборки x i из этой совокупности μ = E{x i } есть математическое ожидание этой выборки.

На практике разница между μ и x ¯ {\displaystyle {\bar {x}}} в том, что μ является типичной переменной, потому что видеть можно скорее выборку, а не всю генеральную совокупность. Поэтому, если выборку представлять случайным образом (в терминах теории вероятностей), тогда x ¯ {\displaystyle {\bar {x}}} (но не μ) можно трактовать как случайную переменную, имеющую распределение вероятностей на выборке (вероятностное распределение среднего).

Обе эти величины вычисляются одним и тем же способом:

X ¯ = 1 n ∑ i = 1 n x i = 1 n (x 1 + ⋯ + x n) . {\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}={\frac {1}{n}}(x_{1}+\cdots +x_{n}).}

Если X - случайная переменная, тогда математическое ожидание X можно рассматривать как среднее арифметическое значений в повторяющихся измерениях величины X . Это является проявлением закона больших чисел. Поэтому выборочное среднее используется для оценки неизвестного математического ожидания.

В элементарной алгебре доказано, что среднее n + 1 чисел больше среднего n чисел тогда и только тогда, когда новое число больше чем старое среднее, меньше тогда и только тогда, когда новое число меньше среднего, и не меняется тогда и только тогда, когда новое число равно среднему. Чем больше n , тем меньше различие между новым и старым средними значениями.

Заметим, что имеется несколько других «средних» значений, в том числе среднее степенное, среднее Колмогорова, гармоническое среднее, арифметико-геометрическое среднее и различные средне-взвешенные величины (например, среднее арифметическое взвешенное, среднее геометрическое взвешенное, среднее гармоническое взвешенное).

Примеры

  • Для трёх чисел необходимо сложить их и разделить на 3:
x 1 + x 2 + x 3 3 . {\displaystyle {\frac {x_{1}+x_{2}+x_{3}}{3}}.}
  • Для четырёх чисел необходимо сложить их и разделить на 4:
x 1 + x 2 + x 3 + x 4 4 . {\displaystyle {\frac {x_{1}+x_{2}+x_{3}+x_{4}}{4}}.}

Или проще 5+5=10, 10:2. Потому что мы складывали 2 числа, а значит, сколько чисел складываем, на столько и делим.

Непрерывная случайная величина

Для непрерывно распределённой величины f (x) {\displaystyle f(x)} среднее арифметическое на отрезке [ a ; b ] {\displaystyle } определяется через определённый интеграл:

F (x) ¯ [ a ; b ] = 1 b − a ∫ a b f (x) d x {\displaystyle {\overline {f(x)}}_{}={\frac {1}{b-a}}\int _{a}^{b}f(x)dx}

Некоторые проблемы применения среднего

Отсутствие робастности

Основная статья: Робастность в статистике

Хотя среднее арифметическое часто используется в качестве средних значений или центральных тенденций, это понятие не относится к робастной статистике, что означает, что среднее арифметическое подвержено сильному влиянию «больших отклонений». Примечательно, что для распределений с большим коэффициентом асимметрии среднее арифметическое может не соответствовать понятию «среднего», а значения среднего из робастной статистики (например, медиана) может лучше описывать центральную тенденцию.

Классическим примером является подсчёт среднего дохода. Арифметическое среднее может быть неправильно истолковано в качестве медианы, из-за чего может быть сделан вывод, что людей с большим доходом больше, чем на самом деле. «Средний» доход истолковывается таким образом, что доходы большинства людей находятся вблизи этого числа. Этот «средний» (в смысле среднего арифметического) доход является выше, чем доходы большинства людей, так как высокий доход с большим отклонением от среднего делает сильный перекос среднего арифметического (в отличие от этого, средний доход по медиане «сопротивляется» такому перекосу). Однако, этот «средний» доход ничего не говорит о количестве людей вблизи медианного дохода (и не говорит ничего о количестве людей вблизи модального дохода). Тем не менее, если легкомысленно отнестись к понятиям «среднего» и «большинство народа», то можно сделать неверный вывод о том, что большинство людей имеют доходы выше, чем они есть на самом деле. Например, отчёт о «среднем» чистом доходе в Медине, штат Вашингтон, подсчитанный как среднее арифметическое всех ежегодных чистых доходов жителей, даст на удивление большое число из-за Билла Гейтса. Рассмотрим выборку (1, 2, 2, 2, 3, 9). Среднее арифметическое равно 3.17, но пять значений из шести ниже этого среднего.

Сложный процент

Основная статья: Окупаемость инвестиций

Если числа перемножать , а не складывать , нужно использовать среднее геометрическое, а не среднее арифметическое. Наиболее часто этот казус случается при расчёте окупаемости инвестиций в финансах.

Например, если акции в первый год упали на 10 %, а во второй год выросли на 30 %, тогда некорректно вычислять «среднее» увеличение за эти два года как среднее арифметическое (−10 % + 30 %) / 2 = 10 %; правильное среднее значение в этом случае дают совокупные ежегодные темпы роста, по которым годовой рост получается только около 8,16653826392 % ≈ 8,2 %.

Причина этого в том, что проценты имеют каждый раз новую стартовую точку: 30 % - это 30 % от меньшего, чем цена в начале первого года, числа: если акции в начале стоили $30 и упали на 10 %, они в начале второго года стоят $27. Если акции выросли на 30 %, они в конце второго года стоят $35.1. Арифметическое среднее этого роста 10 %, но поскольку акции выросли за 2 года всего на $5.1, средний рост в 8,2 % даёт конечный результат $35.1:

[$30 (1 - 0.1) (1 + 0.3) = $30 (1 + 0.082) (1 + 0.082) = $35.1]. Если же использовать таким же образом среднее арифметическое значение 10 %, мы не получим фактическое значение: [$30 (1 + 0.1) (1 + 0.1) = $36.3].

Сложный процент в конце 2 года: 90 % * 130 % = 117 % , то есть общий прирост 17 %, а среднегодовой сложный процент 117 % ≈ 108.2 % {\displaystyle {\sqrt {117\%}}\approx 108.2\%} , то есть среднегодовой прирост 8,2 %.

Направления

Основная статья: Статистика направлений

При расчёте среднего арифметического значений некоторой переменной, изменяющейся циклически (например, фаза или угол), следует проявлять особую осторожность. Например, среднее чисел 1° и 359° будет равно 1 ∘ + 359 ∘ 2 = {\displaystyle {\frac {1^{\circ }+359^{\circ }}{2}}=} 180°. Это число неверно по двум причинам.

  • Во-первых, угловые меры определены только для диапазона от 0° до 360° (или от 0 до 2π при измерении в радианах). Таким образом, ту же пару чисел можно было бы записать как (1° и −1°) или как (1° и 719°). Средние значения каждой из пар будут отличаться: 1 ∘ + (− 1 ∘) 2 = 0 ∘ {\displaystyle {\frac {1^{\circ }+(-1^{\circ })}{2}}=0^{\circ }} , 1 ∘ + 719 ∘ 2 = 360 ∘ {\displaystyle {\frac {1^{\circ }+719^{\circ }}{2}}=360^{\circ }} .
  • Во-вторых, в данном случае, значение 0° (эквивалентное 360°) будет геометрически лучшим средним значеним, так как числа отклоняются от 0° меньше, чем от какого-либо другого значения (у значения 0° наименьшая дисперсия). Сравните:
    • число 1° отклоняется от 0° всего на 1°;
    • число 1° отклоняется от вычисленного среднего, равного 180°, на 179°.

Среднее значение для циклической переменной, рассчитанное по приведённой формуле, будет искусственно сдвинуто относительно настоящего среднего к середине числового диапазона. Из-за этого среднее рассчитывается другим способом, а именно, в качестве среднего значения выбирается число с наименьшей дисперсией (центральная точка). Также вместо вычитания используется модульное расстояние (то есть, расстояние по окружности). Например, модульное расстояние между 1° и 359° равно 2°, а не 358° (на окружности между 359° и 360°==0° - один градус, между 0° и 1° - тоже 1°, в сумме - 2°).

Средневзвешенное значение - что это и как его вычислить?

В процессе изучения математики школьники знакомятся с понятием среднего арифметического. В дальнейшем в статистике и некоторых других науках студенты сталкиваются и с вычислением других средних значений. Какими они могут быть и чем отличаются друг от друга?

Средние величины: смысл и различия

Не всегда точные показатели дают понимание ситуации. Для того чтобы оценить ту или иную обстановку, нужно подчас анализировать огромное количество цифр. И тогда на помощь приходят средние значения. Именно они позволяют оценить ситуацию в общем и целом.

Со школьных времен многие взрослые помнят о существовании среднего арифметического. Его очень просто вычислить - сумма последовательности из n членов делится на n. То есть если нужно вычислить среднее арифметическое в последовательности значений 27, 22, 34 и 37, то необходимо решить выражение (27+22+34+37)/4, поскольку в расчетах используется 4 значения. В данном случае искомая величина будет равна 30.

Часто в рамках школьного курса изучают и среднее геометрическое. Расчет данного значения базируется на извлечении корня n-ной степени из произведения n-членов. Если брать те же числа: 27, 22, 34 и 37, то результат вычислений будет равен 29,4.

Среднее гармоническое в общеобразовательной школе обычно не является предметом изучения. Тем не менее оно используется довольно часто. Эта величина обратна среднему арифметическому и рассчитывается как частное от n - количества значений и суммы 1/a 1 +1/a 2 +...+1/a n . Если снова брать тот же ряд чисел для расчета, то гармоническое составит 29,6.

Средневзвешенное значение: особенности

Однако все вышеперечисленные величины могут быть использованы не везде. Например, в статистике при расчете некоторых средних значений важную роль имеет "вес" каждого числа, используемого в вычислениях. Результаты являются более показательными и корректными, поскольку учитывают больше информации. Эта группа величин носит общее название "средневзвешенное значение". Их в школе не проходят, поэтому на них стоит остановиться поподробнее.

Прежде всего, стоит рассказать, что подразумевается под "весом" того или иного значения. Проще всего объяснить это на конкретном примере. Два раза в день в больнице происходит замер температуры тела у каждого пациента. Из 100 больных в разных отделениях госпиталя у 44 будет нормальная температура - 36,6 градусов. У еще 30 будет повышенное значение - 37,2, у 14 - 38, у 7 - 38,5, у 3 - 39, и у двух оставшихся - 40. И если брать среднее арифметическое, то эта величина в общем по больнице будет составлять больше 38 градусов! А ведь почти у половины пациентов совершенно нормальная температура. И здесь корректнее будет использовать средневзвешенное значение, а "весом" каждой величины будет количество людей. В этом случае результатом расчета будет 37,25 градусов. Разница очевидна.

В случае средневзвешенных расчетов за "вес" может быть принято количество отгрузок, число работающих в тот или иной день людей, в общем, все что угодно, что может быть измерено и повлиять на конечный результат.

Разновидности

Средневзвешенное значение соотносится со средним арифметическим, рассмотренным в начале статьи. Однако первая величина, как уже было сказано, учитывает также вес каждого числа, использованного в расчетах. Помимо этого существуют также средневзвешенное геометрическое и гармоническое значения.

Имеется еще одна интересная разновидность, используемая в рядах чисел. Речь идет о взвешенном скользящем среднем значении. Именно на его основе рассчитываются тренды. Помимо самих значений и их веса там также используется периодичность. И при вычислении среднего значения в какой-то момент времени также учитываются величины за предыдущие временные отрезки.

Расчет всех этих значений не так уж и сложен, однако на практике обычно используется только обычное средневзвешенное значение.

Способы расчета

В век повальной компьютеризации нет необходимости вычислять средневзвешенное значение вручную. Однако нелишним будет знать формулу расчета, чтобы можно было проверить и при необходимости откорректировать полученные результаты.

Проще всего будет рассмотреть вычисление на конкретном примере.

Необходимо узнать, какая же средняя оплата труда на этом предприятии с учетом количества рабочих, получающих тот или иной заработок.

Итак, расчет средневзвешенного значения производится с помощью такой формулы:

x = (a 1 *w 1 +a 2 *w 2 +...+a n *w n)/(w 1 +w 2 +...+w n)

Для примера же вычисление будет таким:

x = (32*20+33*35+34*14+40*6)/(20+35+14+6) = (640+1155+476+240)/75 = 33,48

Очевидно, что нет особых сложностей с тем, чтобы вручную рассчитать средневзвешенное значение. Формула же для вычисления этой величины в одном из самых популярных приложений с формулами - Excel - выглядит как функция СУММПРОИЗВ (ряд чисел; ряд весов)/СУММ (ряд весов).

Как найти среднее значение в excel?

как найти среднее арифметическое в excel?

Владимир09854

Проще простого. Для того, чтобы найти среднее значение в excel, понадобится всего лишь 3 ячейки. В первую мы запишем одно число, во вторую - другое. А в третьей ячейке мы забьем формулу, которая нам выдаст среднее значение между этими двумя числами из первой и второй ячейки. Если ячейка №1 называется А1, ячейка №2 называется B1, то в ячейке с формулой нужно записать так:

Такой формулой вычисляется среднее арифметическое двух чисел.

Для красоты наших обсчетов можно выделить ячейки линиями, в виде таблички.

Есть еще в самом экселе функция определения среднего значения, но я пользуюсь дедовским методом и ввожу нужную мне формулу. Таким образом я уверен, что эксель посчитает именно так как мне надо, а не придумает какое-то там свое округление.

M3sergey

Это очень просто, если данные уже внесены в ячейки. Если вас интересует просто число, достаточно выделить нужный диапазон /диапазоны, и внизу справа в строке состояния появится значение суммы этих чисел, их среднее арифметическое и их количество.

Можно выделить пустую ячейку, нажать на треугольничек (раскрывающийся список) "Автосумма" и выбрать там "Среднее", после чего согласится с предложенным диапазоном для расчета, или выбрать свой.

Наконец, можно воспользоваться формулами напрямую - нажать "Вставить функцию" рядом со строкой формул и адресом ячейки. Функция СРЗНАЧ находится в категории "Статистические", и принимает в качестве аргументов как числа, так и ссылки на ячейки и др. Там же можно выбрать более сложные варианты, например, СРЗНАЧЕСЛИ - расчет среднего по условию.

Найти среднее значение в excel является довольно простой задачей. Здесь нужно понимать - хотите ли вы использовать это среднее значение в каких-то формулах или нет.

Если вам нужно получить только значение, то достаточно выделить необходимый диапазон чисел, после чего excel автоматически посчитает среднее значение - оно будет выводится в строке состояния, заголовок "Среднее".

В том случае, когда вы хотите использовать полученный результат в формулах, можно поступить так:

1) Суммировать ячейки с помощью функции СУММ и разделить всё это на количество чисел.

2) Более правильный вариант - воспользоваться специальной функцией, которая называется СРЗНАЧ. Аргументами данной функции могут быть числа, заданные последовательно, либо диапазон чисел.

Владимир тихонов

обводите значения, которые будут участвовать в расчёте,нажимаете вкладку "Формулы", там увидите слева есть "Автосумма" и рядом с ней треугольник, направленный вниз. щёлкаете на этот треугольник и выбираете "Среднее". Вуаля, готово) внизу столбика увидите среднее значение:)

Екатерина муталапова

Начнём сначала и по порядку. Что значит среднее значение?

Среднее значение - это значение, которое является средним арифметическим значением, т.е. вычисляется сложением набора чисел с последующим делением всей суммы чисел на их количество. Например, для чисел 2, 3, 6, 7, 2 будет 4 (сумму чисел 20 делим на их количество 5)

В таблице Excel лично мне, проще всего было пользоваться формулой =СРЗНАЧ. Чтобы рассчитать среднее значение, необходимо ввести данные в таблицу, под столбцом данных написать функцию =СРЗНАЧ(), а в скобках указываем диапазон чисел в ячейках, выделив столбец с данными. После этого нажимаем ВВОД, либо просто кликаем левой кнопкой мышки на любой ячейке. Результат отобразится в ячейке под столбцом. С виду описано непонятно, но по факту - минутное дело.

Искатель приключений 2000

Программа Ecxel является многообразной, поэтому есть несколько вариантов, которые позволят вам найти средние значение:

Первый вариант. Вы просто суммируете все ячейки и делите на их количество;

Второй вариант. Воспользоваться специальной командой, напишете в требуемой ячейки формулу "=СРЗНАЧ(а тут укажите диапазон ячеек)";

Третий вариант. Если вы выделите требуемый диапазон, то обратите внимание, что на страничке внизу, также выводится среднее значение в данных ячейках.

Таким образом, способов найти среднее значение очень много, вам просто нужно выбрать оптимальный для вас и пользоваться им постоянно.

В Excel c помощью функции СРЗНАЧ можно рассчитать среднее арифметическое простое. Для этого нужно вбить ряд значений. Нажать равно и выбрать в Категории Статистические, среди которых выбрать функцию СРЗНАЧ

Также с помощью статистических формул можно рассчитать среднее арифметическое взвешенное, которое считается более точным. Для его расчета нам понадобятся значения показателя и частота.

Как найти среднее значение в Excel?

Ситуация такая. Имеется следующая таблица:

В столбиках, закрашенных красным цветом содержатся численные значения оценок по предметам. В столбце "Средний балл" требуется подсчитать их среднее значение.
Проблема вот в чем: всего предметов 60-70 и часть из них на другом листе.
Я смотрела в другом документе уже подсчитано среднее, а в ячейке стоит формула типа
="имя листа"!|Е12
но это делал какой-то программист, которого уволили.
Подскажите, пожалуйста, кто разбирается в этом.

Гектор

В строке фцнкций вставляешь из предложеннвх функций "СРЗНАЧ" и выбираешь откуда те надо высчитать (B6:N6) для Иванова, к примеру. Про соседние листы точно не знаю, но наверняка это содержится в стандартной виндовской справке

Подскажите как вычислить среднее значение в ворде

Подскажите пожалуйста как вычислить среднее значение в ворде. А именно среднее значение оценок, а не количества людей получивших оценки.

Юля павлова

Word может многое с помощью макросов. Нажми ALT+F11 и пиши программу-макрос..
Кроме того Вставка-Объект...позволит использовать другие программы, хоть Excel, для создания листа с таблицей внутри Word-документа.
Но в данном случае тебе надо в колонке таблицы записать твои числа, а в нижнюю ячейку той же колонки занести среднее, правильно?
Для этого в нижнюю ячейку вставляешь поле.
Вставка-Поле... -Формула
Содержимое поля
[=AVERAGE(ABOVE)]
выдает среднее от суммы выше лежащих ячеек.
Если поле выделить и нажать правую кнопку мыши, то его можно Обновлять, если числа изменились,
просматривать код или значение поля, изменять код непосредственно в поле.
Если что-то испортится, удали всё поле в ячейке и создай заново.
AVERAGE означает среднее, ABOVE - около, то есть ряд выше лежащих ячеек.
Всё это я не знала сама, но легко обнаружила в HELP, разумеется, немного соображая.

В 1906 году великий ученый и известный специалист по евгенике Фрэнсис Гальтон посетил ежегодную выставку достижений животноводства и птицеводства в западной Англии, где совершенно случайно провел интересный эксперимент.

Как отмечает Джеймс Суровецки, автор книги «Мудрость толпы», на ярмарке Гальтона заинтересовало одно соревнование, в рамках которого люди должны были угадать вес забитого быка. Назвавший наиболее близкое к истинному число объявлялся победителем.

Гальтон был известен своим презрением к интеллектуальным способностям обычных людей. Он считал, что только настоящие эксперты смогут сделать точные утверждения о весе быка. А 787 участников соревнования не были экспертами.

Ученый собирался доказать некомпетентность толпы, вычислив среднее число из ответов участников. Каково же было его удивление, когда оказалось, что полученный им результат почти в точности соответствовал настоящему весу быка!

Среднее значение — позднее изобретение

Конечно, точность ответа поразила исследователя. Но еще более примечательным является тот факт, что Гальтон вообще догадался воспользоваться средним значением.

В сегодняшнем мире средние, и так называемые медианные показатели встречаются на каждом шагу: средняя температура в Нью-Йорке в апреле равняется 52 градусам по Фаренгейту; Стивен Карри в среднем зарабатывает 30 очков за игру; медианный семейный доход в США составляет $51 939/год.

Однако же идея о том, что множество различных результатов можно репрезентировать одним числом, довольна нова. До 17-ого века средние числа вообще не использовались.

Каким же образом появилась и развилась концепция средних и медианных значений? И как ей удалось стать главной измерительной методикой в наше время?

Преобладание средних значений над медианными имело далеко идущие последствия для на нашего понимания информации. И нередко оно приводило людей в заблуждение.

Среднее и медианное значения

Представьте, что вы рассказываете историю о четырех людях, ужинавших прошлым вечером с вами в ресторане. Одному из них вы бы дали 20 лет, другому — 30, третьему — 40, а четвертому — 50. Что вы скажете об их возрасте в своей истории?

Скорее всего, вы назовете их средний возраст.

Среднее значение часто используется для передачи информации о чем-либо, а также для описания некоего множества измерений. Технически, среднее значение — это то, что математики называют «средним арифметическим» — сумма всех измерений, разделенная на число измерений.

Хотя слово «среднее» (average) часто используется как синоним слова «медианное» (median), последним чаще обозначается середина чего-либо. Это слово происходит от латинского «medianus», что значит «середина».

Медианное значение в Древней Греции

История медианного значения берет свое начало с учения древнегреческого математика Пифагора. Для Пифагора и его школы медиана имела четкое определение и сильно отличалась от того, как мы понимаем среднее значение сегодня. Оно использовалось только в математике, а не в анализе данных.

В школе пифагорейцев медианное значение было средним числом в трехчленной последовательности чисел, находящемся в «равном» отношении с соседними членами. «Равное» отношение могло означать одинаково расстояние. Например, число 4 в ряду 2,4,6. Однако оно также могло выражать геометрическую прогрессию, например 10 в последовательности 1,10,100.

Статистик Черчилль Эйзенхарт объясняет, что в Древней Греции, медианное значение не использовалось в качестве репрезентирующего или заменяющего какой-либо набор чисел. Оно просто обозначало середину, и часто использовалось в математических доказательствах.

Эйзенхарт посвятил целых десять лет изучению среднего и медианного значений. Изначально он пытался отыскать репрезентирующую функцию медианы в ранних научных построениях. Однако вместо этого он обнаружил, что большинство ранних физиков и астрономов опирались на единичные, умело проведенные измерения, и у них не было методологии, позволявшей выбрать лучший результат среди множества наблюдений.

Современные исследователи основывают свои выводы на сборе больших объемов данных, как, например, биологи, изучающие человеческий геном. Древние ученые же могли провести несколько измерений, но выбирали лишь самое лучшее для построения своих теорий.

Как писал историк астрономии Отто Нойгебауэр, «это согласуется с осознанным стремлением античных людей минимизировать количество эмпирических данных в науке, потому что они не верили в точность непосредственных наблюдений».

Например, греческий математик и астроном Птолемей вычислил угловой диаметр Луны, используя метод наблюдения и теорию движения земли. Его результат был равен 31’20. Сегодня же мы знаем, что диаметр Луны колеблется от 29’20 до 34’6 в зависимости от расстояния от Земли. Птолемей в своих вычислениях использовал мало данных, но у него были все основания полагать, что они были точными.

Эйзенхарт пишет: «Необходимо иметь в виду, что связь между наблюдением и теорией в античности была иной, нежели сегодня. Результаты наблюдений понимались не как факты, под которые должна подстраиваться теория, но как конкретные случаи, которые могут быть полезны лишь в качестве иллюстративных примеров истинности теории»

В конце концов, ученые обратятся к репрезентативным измерениям данных, но изначально ни средние, ни медианные значения не использовались в этой роли. Со времен античности до сегодняшнего дня в качестве такого репрезентативного средства использовался другой математический концепт — полусумма крайних значений.

Полусумма крайних значений

Новые научные средства почти всегда возникают из необходимости решить определенную задачу в какой-либо дисциплине. Необходимость найти лучшее значение среди множества измерений возникло из потребности точно определить географическое положение.

Интеллектуальный гигант 11-ого века Аль-Бируни известен как один из первых людей, использовавших методологию репрезентирующих значений. Аль-Бируни писал, что когда в его распоряжении было множество измерений, и он хотел найти лучшее среди них, он использовал следующее «правило»: нужно отыскать число, соответствующее середине между двумя крайними значениями. При вычислении полусуммы крайних значений не принимаются во внимание все числа между максимальным и минимальным значениями, а находится среднее только для этих двух чисел.

Аль-Бируни применял этот метод в разных областях, в том числе для вычисления долготы города Газни, что находится на территории современного Афганистана, а также в своих исследованиях свойств металлов.

Однако в последние несколько веков полусумма крайних значений используется все реже. На самом деле, в современной науке она и вовсе не актуальна. На место полусуммы пришло медианное значение.

Переход к средним значениям

К началу 19-ого века использование медианного/среднего значения стало распространенным методом нахождения наиболее точно репрезентирующего значения из группы данных. Фридрих фон Гаусс, выдающийся математик своего времени, в 1809-ом году писал: «Считалось, что если некоторое число было определено несколькими прямыми наблюдениями, совершенными в одинаковых условиях, то среднее арифметическое значение является наиболее истинным значением. Если оно и не совсем строгое, то, по крайней мере, оно близко к действительности, и поэтому на него всегда можно положиться».

Почему произошел подобный сдвиг в методологии?

На этот вопрос довольно трудно ответить. В своем исследовании Черчилль Эйзенхарт предполагает, что метод нахождения среднего арифметического мог зародиться в области измерения магнитного отклонения, то есть в отыскании отличия между направлением стрелки компаса, указывающей на север, и реальным севером. Это измерение было крайне важным в эпоху Великих Географических Открытий.

Эйзенхарт выяснил, что до конца 16-ого века большинство измерявших магнетическое отклонение ученых использовали метод ad hoc (от лат. «к этому, для данного случая, для этой цели») при выборе наиболее точного измерения.

Но в 1580-ом году ученый Уильям Боро подошел к проблеме иначе. Он взял восемь различных измерений отклонения и, сравнив их, пришел к выводу, что наиболее точное значение было между 11 ⅓ и 11 ¼ градусами. Вероятно, он вычислил среднее арифметическое, которое находилось в этом диапазоне. Однако сам Боро открыто не называл свой подход новым методом.

До 1635-ого года вообще не было однозначных случаев использования среднего значения в качестве репрезентирующего числа. Однако именно тогда английский астроном Генри Геллибренд взял два различных результата измерения магнетического отклонения. Одно из них было сделано утром (11 градусов), а другое — днем (11 градусов и 32 минуты). Вычисляя наиболее истинное значение, он писал:

«Если мы найдем среднее арифметическое, мы с большой вероятностью можем утверждать, что результат точного измерения должен быть около 11 градусов 16 минут».

Вполне вероятно, что это был первый случай использования среднего значения как наиболее близкого к истинному!

Слово «среднее» (average) применялось в английском языке в начале 16-ого века для обозначения финансовых потерь от ущерба, которое получило судно или перевозимый груз во время плавания. В течение следующих ста лет оно обозначало именно эти потери, которые высчитывались как среднее арифметическое. Например, если корабль во время плавания был поврежден, и команде приходилось выбрасывать за борт некоторые товары, чтобы сохранить вес судна, инвесторы несли финансовые потери, эквивалентные сумме их инвестиции — эти потери вычислялись так же, как среднее арифметическое. Так постепенно значения среднего (average) и среднего арифметического сближались.

Медианное значение

В наши дни среднее значение или среднее арифметическое используются как основной способ для выбора репрезентативного значения множества измерений. Как же это произошло? Почему эта роль не была отведена медианному значению?

Френсис Гальтон был чемпионом медианного значения

Термин «медианное значение» (median) — средний член в ряде чисел, разделяющий этот ряд наполовину — появился примерно в то же время, что и среднее арифметическое. В 1599-ом году математик Эдвард Райт, работавший над проблемой нормального отклонения в компасе, впервые предложил использовать медианное значение.

«…Допустим, множество лучников стреляют в некоторую мишень. Цель впоследствии убирают. Каким образом можно узнать, где была цель? Нужно найти среднее место между всеми стрелами. Аналогично, среди множества результатов наблюдений ближе всего к истине будет то, которое находится посередине».

Медианное значение широко использовалось в девятнадцатом столетии, став обязательной частью любого анализа данных в то время. Им также пользовался и Френсис Гальтон, выдающийся аналитик девятнадцатого века. В истории о взвешивании быка, рассказанной вначале этой статьи, Гальтон изначально использовал медианное значение как представляющее мнение толпы.

Множество аналитиков, включая Гальтона, предпочитали медианное значение, поскольку его легче рассчитать для небольших наборов данных.

Тем не менее, медианное значение никогда не было более популярным, чем среднее. Скорее всего, это произошло из-за особых статистических свойств, присущих среднему значению, а также его отношения к нормальному распределению.

Связь среднего значения и нормального распределения

Когда мы проводим множество измерений, их результаты, как говорят статистики, «нормально распределены». Это значит, что если эти данные нанести на график, то точки на нем будут изображать нечто похожее на колокол. Если их соединить, получится «колоколообразная» кривая. Нормальному распределению соответствуют многие статистические данные, например, рост людей, показатель интеллекта, а также показатель самой высокой годовой температуры.

Когда данные нормально распределены, среднее значение будет очень близким к высшей точке на колоколообразной кривой, и очень большое количество измерений будет близким к среднему значению. Существует даже формула, предсказывающая, как много результатов измерений будут находиться на некотором расстоянии от среднего значения.

Таким образом, вычисление среднего значения дает исследователям много дополнительной информации.

Связь среднего значения со стандартным отклонением дает ему большое преимущество, ведь у медианного значения такой связи нет. Эта связь — важная часть анализа экспериментальных данных и статистической обработки информации. Именно поэтому среднее значение стало ядром статистики и всех наук, полагающихся в своих заключениях на множественные данные.

Преимущество среднего значения также связано с тем, что оно легко вычисляется компьютерами. Хотя медианное значение для небольшой группы данных довольно легко вычислить самостоятельно, все же намного проще написать компьютерную программу, которая находила бы среднее значение. Если вы пользуетесь Microsoft Excel, то наверняка знаете, что медианную функцию не так просто рассчитать, как функцию среднего значения.

В итоге, благодаря большому научному значению и простоте использования среднее значение стало главной репрезентативной величиной. Тем не менее, этот вариант далеко не всегда является самым лучшим.

Преимущества медианного значения

Во многих случаях, когда мы хотим вычислить центральное значение распределения, медианное значение является лучшим показателем. Так происходит потому, что среднее значение во многом определяется крайними результатами измерений.

Многие аналитики считают, что бездумное использование среднего значения отрицательно сказывается на нашем понимании количественной информации. Люди смотрят на среднее значение и думают, что это «норма». Но на самом деле оно может быть определено каким-нибудь одним сильно выдающимся из однородного ряда членом.

Представьте себе аналитика, желающего узнать репрезентативное значение для стоимости пяти домов. Четыре дома стоят $100,000, а пятый — $900,000. Среднее значение, таким образом, будет равняться $200,000, а медианное — $100,000. В этом, как и во многих других случаях, медианное значение дает лучшее понимание того, что можно назвать «стандартом».

Понимая, насколько сильно крайние значения могут сказаться на среднем, для отражения изменений в семейных доходах США используется медианное значение.

Медианные показатель также менее чувствителен к «грязным» данным, с которыми сегодня имеют дело аналитики. Многие статистики и аналитики собирают информацию, опрашивая людей в интернете. Если пользователь случайно добавит в ответ лишний ноль, который превратит 100 в 1000, то эта ошибка намного сильнее скажется на среднем значении, чем на медианном.

Среднее или медианное?

Выбор между медианным и средним значением имеет далеко идущие последствия — от нашего понимания влияния лекарств на здоровье до знаний относительно того, какой семейный бюджет можно назвать стандартным.

Поскольку сбор и анализ данных все больше определяет то, как мы понимаем мир, растет и значение используемых нами величин. В идеальном мире аналитики использовали бы и среднее, и медианное значение для графического выражения данных.

Но мы живем в условиях ограниченного времени и внимания. Из-за этих ограничений часто нам необходимо выбрать лишь что-то одно. И во многих случаях предпочтительней именно медианное значение.

Материал из Википедии - свободной энциклопедии

Сре́днее значе́ние - числовая характеристика множества чисел или функций (в математике); - некоторое число, заключённое между наименьшим и наибольшим из их значений.

Основные сведения

Исходным пунктом становления теории средних величин явилось исследование пропорций школой Пифагора . При этом не проводилось строгого различия между понятиями средней величины и пропорции . Значительный толчок развитию теории пропорций с арифметической точки зрения был дан греческими математиками - Никомахом Герасским (конец I - начало II в. н. э.) и Паппом Александрийским (III в. н. э.). Первым этапом развития понятия средней является этап, когда средняя стала считаться центральным членом непрерывной пропорции. Но понятие средней как центрального значения прогрессии не дает возможности вывести понятие средней по отношению к последовательности n членов, независимо от того, в каком порядке они следуют друг за другом. Для этой цели необходимо прибегнуть к формальному обобщению средних. Следующий этап - переход от непрерывных пропорций к прогрессиям - арифметической , геометрической и гармонической (англ. ) .

Каждый из видов средней может выступать либо в форме простой, либо в форме взвешенной средней. Правильность выбора формы средней вытекает из материальной природы объекта исследования . Формулы простых средних применяются в случае, если индивидуальные значения усредняемого признака не повторяются. Когда в практических исследованиях отдельные значения изучаемого признака встречаются несколько раз у единиц исследуемой совокупности, тогда частота повторений индивидуальных значений признака присутствует в расчетных формулах степенных средних. В этом случае они называются формулами взвешенных средних.

Иерархия средних значений в математике

  • среднее значение функции - понятие, определяемое многими способами.
    • Более конкретно, но на основе произвольных функций, определяются средние Колмогорова для набора чисел.
      • среднее степенное - частный случай средних Колмогорова при \phi(x)=x^\alpha. Средние различных степеней связывает между собой неравенство о средних . Наиболее распространённые частные случаи:
        1. среднее арифметическое (\alpha=1);
        2. среднее квадратическое (\alpha=2);
        3. среднее гармоническое (\alpha=-1);
        4. по непрерывности при \alpha\to 0 доопределяется среднее геометрическое , которое также является Колмогоровским средним при \phi(x)=\log x
  • Среднее взвешенное - обобщение средней величины на случай произвольной линейной комбинации :
  • среднее хронологическое - обобщает значения признака для одной и той же единицы или совокупности в целом, изменяющихся во времени.
  • среднее логарифмическое, определяемое по формуле \bar a = \frac{a_1 - a_2}{\ln(a_1/a_2)}, используется в теплотехнике
  • среднее логарифмическое, определяемое в электроизоляции соответствии с ГОСТ 27905.4-88 определяется как log\bar a = \frac{\log a_1+log a_2+...+...log a_n}{a_1+a_2+...+a_n} (логарифм по любому основанию)

В теории вероятностей и статистике

  • непараметрические средние - мода , медиана .
  • среднее значение случайной величины - то же, что математическое ожидание случайной величины. По сути - среднее значение её функции распределения.

См. также

Напишите отзыв о статье "Среднее значение"

Примечания

Отрывок, характеризующий Среднее значение

Он интересовался пустяками, шутил о любви к путешествиям Боссе и небрежно болтал так, как это делает знаменитый, уверенный и знающий свое дело оператор, в то время как он засучивает рукава и надевает фартук, а больного привязывают к койке: «Дело все в моих руках и в голове, ясно и определенно. Когда надо будет приступить к делу, я сделаю его, как никто другой, а теперь могу шутить, и чем больше я шучу и спокоен, тем больше вы должны быть уверены, спокойны и удивлены моему гению».
Окончив свой второй стакан пунша, Наполеон пошел отдохнуть пред серьезным делом, которое, как ему казалось, предстояло ему назавтра.
Он так интересовался этим предстоящим ему делом, что не мог спать и, несмотря на усилившийся от вечерней сырости насморк, в три часа ночи, громко сморкаясь, вышел в большое отделение палатки. Он спросил о том, не ушли ли русские? Ему отвечали, что неприятельские огни всё на тех же местах. Он одобрительно кивнул головой.
Дежурный адъютант вошел в палатку.
– Eh bien, Rapp, croyez vous, que nous ferons do bonnes affaires aujourd"hui? [Ну, Рапп, как вы думаете: хороши ли будут нынче наши дела?] – обратился он к нему.
– Sans aucun doute, Sire, [Без всякого сомнения, государь,] – отвечал Рапп.
Наполеон посмотрел на него.
– Vous rappelez vous, Sire, ce que vous m"avez fait l"honneur de dire a Smolensk, – сказал Рапп, – le vin est tire, il faut le boire. [Вы помните ли, сударь, те слова, которые вы изволили сказать мне в Смоленске, вино откупорено, надо его пить.]
Наполеон нахмурился и долго молча сидел, опустив голову на руку.
– Cette pauvre armee, – сказал он вдруг, – elle a bien diminue depuis Smolensk. La fortune est une franche courtisane, Rapp; je le disais toujours, et je commence a l"eprouver. Mais la garde, Rapp, la garde est intacte? [Бедная армия! она очень уменьшилась от Смоленска. Фортуна настоящая распутница, Рапп. Я всегда это говорил и начинаю испытывать. Но гвардия, Рапп, гвардия цела?] – вопросительно сказал он.
– Oui, Sire, [Да, государь.] – отвечал Рапп.
Наполеон взял пастильку, положил ее в рот и посмотрел на часы. Спать ему не хотелось, до утра было еще далеко; а чтобы убить время, распоряжений никаких нельзя уже было делать, потому что все были сделаны и приводились теперь в исполнение.
– A t on distribue les biscuits et le riz aux regiments de la garde? [Роздали ли сухари и рис гвардейцам?] – строго спросил Наполеон.
– Oui, Sire. [Да, государь.]
– Mais le riz? [Но рис?]
Рапп отвечал, что он передал приказанья государя о рисе, но Наполеон недовольно покачал головой, как будто он не верил, чтобы приказание его было исполнено. Слуга вошел с пуншем. Наполеон велел подать другой стакан Раппу и молча отпивал глотки из своего.
– У меня нет ни вкуса, ни обоняния, – сказал он, принюхиваясь к стакану. – Этот насморк надоел мне. Они толкуют про медицину. Какая медицина, когда они не могут вылечить насморка? Корвизар дал мне эти пастильки, но они ничего не помогают. Что они могут лечить? Лечить нельзя. Notre corps est une machine a vivre. Il est organise pour cela, c"est sa nature; laissez y la vie a son aise, qu"elle s"y defende elle meme: elle fera plus que si vous la paralysiez en l"encombrant de remedes. Notre corps est comme une montre parfaite qui doit aller un certain temps; l"horloger n"a pas la faculte de l"ouvrir, il ne peut la manier qu"a tatons et les yeux bandes. Notre corps est une machine a vivre, voila tout. [Наше тело есть машина для жизни. Оно для этого устроено. Оставьте в нем жизнь в покое, пускай она сама защищается, она больше сделает одна, чем когда вы ей будете мешать лекарствами. Наше тело подобно часам, которые должны идти известное время; часовщик не может открыть их и только ощупью и с завязанными глазами может управлять ими. Наше тело есть машина для жизни. Вот и все.] – И как будто вступив на путь определений, definitions, которые любил Наполеон, он неожиданно сделал новое определение. – Вы знаете ли, Рапп, что такое военное искусство? – спросил он. – Искусство быть сильнее неприятеля в известный момент. Voila tout. [Вот и все.]
Рапп ничего не ответил.
– Demainnous allons avoir affaire a Koutouzoff! [Завтра мы будем иметь дело с Кутузовым!] – сказал Наполеон. – Посмотрим! Помните, в Браунау он командовал армией и ни разу в три недели не сел на лошадь, чтобы осмотреть укрепления. Посмотрим!
Он поглядел на часы. Было еще только четыре часа. Спать не хотелось, пунш был допит, и делать все таки было нечего. Он встал, прошелся взад и вперед, надел теплый сюртук и шляпу и вышел из палатки. Ночь была темная и сырая; чуть слышная сырость падала сверху. Костры не ярко горели вблизи, во французской гвардии, и далеко сквозь дым блестели по русской линии. Везде было тихо, и ясно слышались шорох и топот начавшегося уже движения французских войск для занятия позиции.
Наполеон прошелся перед палаткой, посмотрел на огни, прислушался к топоту и, проходя мимо высокого гвардейца в мохнатой шапке, стоявшего часовым у его палатки и, как черный столб, вытянувшегося при появлении императора, остановился против него.
– С которого года в службе? – спросил он с той привычной аффектацией грубой и ласковой воинственности, с которой он всегда обращался с солдатами. Солдат отвечал ему.

Предположим, что нужно найти среднее число дней для выполнения задач, различными сотрудниками. Или вы хотите вычисление интервала времени 10 лет Средняя температура в определенный день. Вычисление среднего значения ряда чисел несколькими способами.

Среднее функция меры центральной тенденции, в которой находится центр ряда чисел в статистическое распределение. Три большинство общих критериями центральной тенденции выступают.

    Среднее Среднее арифметическое и вычисляется путем добавления ряда чисел и затем деления количества этих чисел. Например среднее значение 2, 3, 3, 5, 7 и 10 имеет 30, разделенных на 6, 5;

    Медиана Средний номер ряда чисел. Половина чисел имеют значения, которые больше, чем Медиана, а половина чисел имеют значения, которые меньше, чем Медиана. Например медиана 2, 3, 3, 5, 7 и 10 - 4.

    Режим Наиболее часто встречающееся число в группе чисел. Например режим 2, 3, 3, 5, 7 и 10 - 3.

Эти три меры центральной тенденции симметричную распределение ряда чисел, являются одни и те же. В асимметричное распределение ряда чисел они могут быть разными.

Вычисление среднего значения ячеек, расположенных непрерывно в одной строке или одном столбце

Выполните следующие действия.

Вычисление среднего значения ячеек, расположенных вразброс

Для выполнения этой задачи используется функция СРЗНАЧ . Скопируйте в приведенной ниже таблице на пустой лист.

Вычисление среднего взвешенного значения

СУММПРОИЗВ и сумм . Пример vThis вычисляет среднюю цену единицы измерения, оплаченная через три покупки, где находится каждый покупки для различное количество единиц измерения по различным ценам за единицу.

Скопируйте в приведенной ниже таблице на пустой лист.

Вычисление среднего значения чисел, без учета нулевых значений

Для выполнения этой задачи используются функции СРЗНАЧ и если . Скопируйте приведенную ниже таблицу и имейте в виду, что в этом примере чтобы проще было понять, скопируйте его на пустой лист.