Если дробно рациональное уравнение равно 1. Как решать уравнения с дробями

Дробные уравнения. ОДЗ.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Продолжаем осваивать уравнения. Мы уже в курсе, как работать с линейными уравнениями и квадратными. Остался последний вид – дробные уравнения . Или их ещё называют гораздо солиднее – дробные рациональные уравнения . Это одно и то же.

Дробные уравнения.

Как ясно из названия, в этих уравнениях обязательно присутствуют дроби. Но не просто дроби, а дроби, у которых есть неизвестное в знаменателе . Хотя бы в одном. Например:

Напомню, если в знаменателях только числа , это линейные уравнения.

Как решать дробные уравнения ? Прежде всего – избавиться от дробей! После этого уравнение, чаще всего, превращается в линейное или квадратное. А дальше мы знаем, что делать… В некоторых случаях оно может превратиться в тождество, типа 5=5 или неверное выражение, типа 7=2. Но это редко случается. Ниже я про это упомяну.

Но как избавиться от дробей!? Очень просто. Применяя всё те же тождественные преобразования.

Нам надо умножить всё уравнение на одно и то же выражение. Так, чтобы все знаменатели посокращались! Всё сразу станет проще. Поясняю на примере. Пусть нам требуется решить уравнение:

Как учили в младших классах? Переносим все в одну сторону, приводим к общему знаменателю и т.д. Забудьте, как страшный сон! Так нужно делать, когда вы складываете или вычитаете дробные выражения. Или работаете с неравенствами. А в уравнениях мы сразу умножаем обе части на выражение, которое даст нам возможность сократить все знаменатели (т.е., в сущности, на общий знаменатель). И какое же это выражение?

В левой части для сокращения знаменателя требуется умножение на х+2 . А в правой требуется умножение на 2. Значит, уравнение надо умножать на 2(х+2) . Умножаем:

Это обычное умножение дробей, но распишу подробно:

Обратите внимание, я пока не раскрываю скобку (х + 2) ! Так, целиком, её и пишу:

В левой части сокращается целиком (х+2) , а в правой 2. Что и требовалось! После сокращения получаем линейное уравнение:

А это уравнение уже решит всякий! х = 2 .

Решим ещё один пример, чуть посложнее:

Если вспомнить, что 3 = 3/1, а 2х = 2х/ 1, можно записать:

И опять избавляемся от того, что нам не очень нравится – от дробей.

Видим, что для сокращения знаменателя с иксом, надо умножить дробь на (х – 2) . А единицы нам не помеха. Ну и умножаем. Всю левую часть и всю правую часть:

Опять скобки (х – 2) я не раскрываю. Работаю со скобкой в целом, как будто это одно число! Так надо делать всегда, иначе ничего не сократится.

С чувством глубокого удовлетворения сокращаем (х – 2) и получаем уравнение безо всяких дробей, в линеечку!

А вот теперь уже раскрываем скобки:

Приводим подобные, переносим всё в левую часть и получаем:

Но до того мы другие задачи научимся решать. На проценты. Те ещё грабли, между прочим!

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Приглашаем тебя на урок о том, решать уравнения с дробями.Скорее всего, тебе уже приходилось сталкиваться с такими уравнениями в прошлом, так что на этом уроке нам предстоит повторить и обобщить те сведения, которые тебе известны.

Больше уроков на сайте

Дробно-рациональным называется уравнение, в котором есть рациональные дроби, то есть переменная в знаменателе. Скорее всего, тебе уже приходилось сталкиваться с такими уравнениями в прошлом, так что на этом уроке нам предстоит повторить и обобщить те сведения, которые тебе известны.

Сначала я предлагаю обратиться к предыдущему уроку данной темы – к уроку «Решение квадратных уравнений». На том уроке был рассмотрен пример решения дробно-рационального уравнения. Рассмотрим его

Решение этого уравнения выполнено в несколько этапов:

  • Преобразование уравнения, содержащего рациональные дроби.
  • Переход к целому уравнению и упрощение его;
  • Решение квадратного уравнения.

Через первые 2 этапа необходимо пройти при решении любого дробно-рационального уравнения. Третий этап – необязателен, так как уравнение, полученное в результате упрощений, может быть не квадратным, а линейным; решать линейное уравнение – намного проще. Есть еще один важный этап при решении дробно-рационального уравнения. Он будет виден при решении следующего уравнения.

что следует сделать в первую очередь? – Конечно же, привести дроби к общему знаменателю. И очень важным является найти именно наименьший общий знаменатель, иначе, далее, в процессе решения, уравнение будет усложнено. Тут заметим, что знаменатель последней дроби можно разложить на множители у и у+2 . Вот именно это произведение и будет общим знаменателем в данном уравнении. Теперь нужно определить дополнительные множители для каждой из дробей. Вернее, для последней дроби такой множитель не понадобится, так как ее знаменатель равен общему. Вот теперь, когда все дроби имеют одинаковые знаменатели, можно перейти к целому уравнению, составленному из одних числителей. Но необходимо cделать одно замечание, о том, что найденное значение неизвестной не может обращать в ноль ни один из знаменателей . Это – ОДЗ: у≠0, у≠2 . На этом окончен первый из описанных ранее этапов решения и переходим ко второму – упрощаем полученное целое уравнение. Для этого – раскрываем скобки, переносим все слагаемые в одну часть уравнения и приводим подобные. Выполни это самостоятельно и проверь – верны ли мои вычисления, в которых получено уравнение 3у 2 – 12у = 0. Это уравнение – квадратное, оно записано в стандартном виде, и один из его коэффициентов равен нулю.

Решение дробно-рациональных уравнений

Справочное пособие

Рациональные уравнения – это уравнения, в которых и левая, и правая части являются рациональными выражениями.

(Напомним: рациональными выражениями называют целые и дробные выражения без радикалов, включающие действия сложения, вычитания, умножения или деления - например: 6x; (m – n)2; x/3y и т.п.)

Дробно-рациональные уравнения, как правило, приводятся к виду:

Где P (x ) и Q (x ) – многочлены.

Для решения подобных уравнений умножить обе части уравнения на Q(x), что может привести к появлению посторонних корней. Поэтому, при решении дробно-рациональных уравнений необходима проверка найденных корней.

Рациональное уравнение называется целым, или алгебраическим, если в нем нет деления на выражение, содержащее переменную.

Примеры целого рационального уравнения:

5x – 10 = 3(10 – x)

3x
- = 2x – 10
4

Если в рациональном уравнении есть деление на выражение, содержащее переменную (x), то уравнение называется дробно-рациональным.

Пример дробного рационального уравнения:

15
x + - = 5x – 17
x

Дробные рациональные уравнения обычно решаются следующим образом:

1) находят общий знаменатель дробей и умножают на него обе части уравнения;

2) решают получившееся целое уравнение;

3) исключают из его корней те, которые обращают в ноль общий знаменатель дробей.

Примеры решения целых и дробных рациональных уравнений.

Пример 1. Решим целое уравнение

x – 1 2x 5x
-- + -- = --.
2 3 6

Решение:

Находим наименьший общий знаменатель. Это 6. Делим 6 на знаменатель и полученный результат умножаем на числитель каждой дроби. Получим уравнение, равносильное данному:

3(x – 1) + 4x 5х
------ = --
6 6

Поскольку в левой и правой частях одинаковый знаменатель, его можно опустить. Тогда у нас получится более простое уравнение:

3(x – 1) + 4x = 5х.

Решаем его, раскрыв скобки и сведя подобные члены:

3х – 3 + 4х = 5х

3х + 4х – 5х = 3

Пример решен.

Пример 2. Решим дробное рациональное уравнение

x – 3 1 x + 5
-- + - = ---.
x – 5 x x(x – 5)

Находим общий знаменатель. Это x(x – 5). Итак:

х 2 – 3х x – 5 x + 5
--- + --- = ---
x(x – 5) x(x – 5) x(x – 5)

Теперь снова освобождаемся от знаменателя, поскольку он одинаковый для всех выражений. Сводим подобные члены, приравниваем уравнение к нулю и получаем квадратное уравнение:

х 2 – 3x + x – 5 = x + 5

х 2 – 3x + x – 5 – x – 5 = 0

х 2 – 3x – 10 = 0.

Решив квадратное уравнение, найдем его корни: –2 и 5.

Проверим, являются ли эти числа корнями исходного уравнения.

При x = –2 общий знаменатель x(x – 5) не обращается в нуль. Значит, –2 является корнем исходного уравнения.

При x = 5 общий знаменатель обращается в нуль, и два выражения из трех теряют смысл. Значит, число 5 не является корнем исходного уравнения.

Ответ: x = –2

Ещё примеры

Пример 1.

x 1 =6, x 2 = - 2,2.

Ответ:-2,2;6.

Пример 2.

Уравнение» мы ввели выше в § 7. Сначала напомним, что такое рациональное выражение. Это - алгебраическое выражение, составленное из чисел и переменной х с помощью операций сложения, вычитания, умножения, деления и возведения в степень с натуральным показателем.

Если r(х) - рациональное выражение, то уравнение r(х) = 0 называют рациональным уравнением.

Впрочем, на практике удобнее пользоваться несколько более широким толкованием термина «рациональное уравнение»: это уравнение вида h(x) = q(x), где h(x) и q(x) - рациональные выражения.

До сих пор мы могли решить не любое рациональное уравнение, а только такое, которое в результате различных преобразований и рассуждений сводилось к линейному уравнению . Теперь наши возможности значительно больше: мы сумеем решить рациональное уравнение, которое сводится не только к линейно-
му, но и к квадратному уравнению.

Напомним, как мы решали рациональные уравнения раньше, и попробуем сформулировать алгоритм решения.

Пример 1. Решить уравнение

Решение. Перепишем уравнение в виде

При этом, как обычно, мы пользуемся тем, что равенства А = В и А - В = 0 выражают одну и ту же зависимость между А и В. Это и позволило нам перенести член в левую часть уравнения с противоположным знаком.

Выполним преобразования левой части уравнения. Имеем


Вспомним условия равенства дроби нулю: тогда, и только тогда, когда одновременно выполняются два соотношения:

1) числитель дроби равен нулю (а = 0); 2) знаменатель дроби отличен от нуля ).
Приравняв нулю числитель дроби в левой части уравнения (1), получим

Осталось проверить выполнение второго указанного выше условия. Соотношение означает для уравнения (1), что . Значения х 1 = 2 и х 2 = 0,6 указанным соотношениям удовлетворяют и потому служат корнями уравнения (1), а вместе с тем и корнями заданного уравнения.

1) Преобразуем уравнение к виду

2) Выполним преобразования левой части этого уравнения:

(одновременно изменили знаки в числителе и
дроби).
Таким образом, заданное уравнение принимает вид

3) Решим уравнение х 2 - 6x + 8 = 0. Находим

4) Для найденных значений проверим выполнение условия . Число 4 этому условию удовлетворяет, а число 2 - нет. Значит, 4 - корень заданного уравнения, а 2 - посторонний корень.
О т в е т: 4.

2. Решение рациональных уравнений методом введения новой переменной

Метод введения новой переменной вам знаком, мы не раз им пользовались. Покажем на примерах, как он применяется при решении рациональных уравнений.

Пример 3. Решить уравнение х 4 + х 2 - 20 = 0.

Решение. Введем новую переменную у = х 2 . Так как х 4 = (х 2) 2 = у 2 , то заданное уравнение можно переписать в виде

у 2 + у - 20 = 0.

Это - квадратное уравнение, корни которого найдем, используя известные формулы ; получим у 1 = 4, у 2 = - 5.
Но у = х 2 , значит, задача свелась к решению двух уравнений:
x 2 =4; х 2 =-5.

Из первого уравнения находим второе уравнение не имеет корней.
Ответ: .
Уравнение вида ах 4 + bx 2 +c = 0 называют биквадратным уравнением («би» - два, т. е. как бы «дважды квадратное» уравнение). Только что решенное уравнение было именно биквадратным. Любое биквадратное уравнение решается так же, как уравнение из примера 3: вводят новую переменную у = х 2 , решают полученное квадратное уравнение относительно переменной у, а затем возвращаются к переменной х.

Пример 4. Решить уравнение

Решение. Заметим, что здесь дважды встречается одно и то же выражение х 2 + Зх. Значит, имеет смысл ввести новую переменную у = х 2 + Зх. Это позволит переписать уравнение в более простом и приятном виде (что, собственно говоря, и составляет цель введения новой переменной - и запись упроща
ется, и структура уравнения становится более ясной):

А теперь воспользуемся алгоритмом решения рационального уравнения.

1) Перенесем все члены уравнения в одну часть:

= 0
2) Преобразуем левую часть уравнения

Итак, мы преобразовали заданное уравнение к виду


3) Из уравнения - 7у 2 + 29у -4 = 0 находим (мы с вами уже решили довольно много квадратных уравнений, так что всегда приводить в учебнике подробные выкладки, наверное, не стоит).

4) Выполним проверку найденных корней с помощью условия 5 (у - 3) (у + 1). Оба корня этому условию удовлетворяют.
Итак, квадратное уравнение относительно новой переменной у решено:
Поскольку у = х 2 + Зх, а у, как мы установили, принимает два значения: 4 и , - нам еще предстоит решить два уравнения: х 2 + Зх = 4; х 2 + Зх = . Корнями первого уравнения являются числа 1 и - 4, корнями второго уравнения - числа

В рассмотренных примерах метод введения новой переменной был, как любят выражаться математики, адекватен ситуации, т. е. хорошо ей соответствовал. Почему? Да потому, что одно и то же выражение явно встречалось в записи уравнения несколько раз и был резон обозначить это выражение новой буквой. Но так бывает не всегда, иногда новая переменная «проявляется» только в процессе преобразований. Именно так будет обстоять дело в следующем примере.

Пример 5. Решить уравнение
х(х- 1)(x-2)(x-3) = 24.
Решение. Имеем
х(х - 3) = х 2 - 3х;
(х - 1)(x - 2) = x 2 -Зx+2.

Значит, заданное уравнение можно переписать в виде

(x 2 - 3x)(x 2 + 3x + 2) = 24

Вот теперь новая переменная «проявилась»: у = х 2 - Зх.

С ее помощью уравнение можно переписать в виде у (у + 2) = 24 и далее у 2 + 2у - 24 = 0. Корнями этого уравнения служат числа 4 и -6.

Возвращаясь к исходной переменной х, получаем два уравнения х 2 - Зх = 4 и х 2 - Зх = - 6. Из первого уравнения находим х 1 = 4, х 2 = - 1; второе уравнение не имеет корней.

О т в е т: 4, - 1.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Решение уравнений с дробями рассмотрим на примерах. Примеры простые и показательные. С их помощью вы наиболее понятным образом сможете усвоить, .
Например, требуется решить простое уравнение x/b + c = d.

Уравнения такого типа называется линейным, т.к. в знаменателе находятся только числа.

Решение выполняется путем умножения обоих частей уравнения на b, тогда уравнение принимает вид x = b*(d – c), т.е. знаменатель дроби в левой части сокращается.

Например, как решить дробное уравнение:
x/5+4=9
Умножаем обе части на 5. Получаем:
х+20=45
x=45-20=25

Другой пример, когда неизвестное находится в знаменателе:

Уравнения такого типа называются дробно-рациональными или просто дробными.

Решать дробное уравнение бы будем путем избавления от дробей, после чего это уравнение, чаще всего, превращается в линейное или квадратное, которое решается обычным способом. Следует только учесть следующие моменты:

  • значение переменной, обращающее в 0 знаменатель, корнем быть не может;
  • нельзя делить или умножать уравнение на выражение =0.

Здесь вступает в силу такое понятие, как область допустимых значений (ОДЗ) – это такие значения корней уравнения, при которых уравнение имеет смысл.

Таким образом решая уравнение, необходимо найти корни, после чего проверить их на соответствие ОДЗ. Те корни, которые не соответствуют нашей ОДЗ, из ответа исключаются.

Например, требуется решить дробное уравнение:

Исходя из вышеуказанного правила х не может быть = 0, т.е. ОДЗ в данном случае: х – любое значение, отличное от нуля.

Избавляемся от знаменателя путем умножения всех членов уравнения на х

И решаем обычное уравнение

5x – 2х = 1
3x = 1
х = 1/3

Ответ: х = 1/3

Решим уравнение посложнее:

Здесь также присутствует ОДЗ: х -2.

Решая это уравнение, мы не станем переносить все в одну сторону и приводить дроби к общему знаменателю. Мы сразу умножим обе части уравнения на выражение, которое сократит сразу все знаменатели.

Для сокращения знаменателей требуется левую часть умножить на х+2, а правую - на 2. Значит, обе части уравнения надо умножать на 2(х+2):

Это самое обычное умножение дробей, которое мы уже рассмотрели выше

Запишем это же уравнение, но несколько по-другому

Левая часть сокращается на (х+2), а правая на 2. После сокращения получаем обычное линейное уравнение:

х = 4 – 2 = 2, что соответствует нашей ОДЗ

Ответ: х = 2.

Решение уравнений с дробями не так сложно, как может показаться. В этой статье мы на примерах это показали. Если у вас возникли какие то трудности с тем, как решать уравнения с дробями , то отписывайтесь в комментариях.