Какие числа называются целыми примеры. Целые числа: общее представление

Натуральные числа

Натуральные числа определение - это целые положительные числа. Натуральные числа используют для счета предметов и многих иных целей. Вот эти числа:

Это натуральный ряд чисел.
Ноль натуральное число? Нет, ноль не является натуральным числом.
Сколько натуральных чисел существует? Существует бесконечное множество натуральных чисел.
Каково наименьшее натуральное число? Единица - это наименьшее натуральное число.
Каково наибольшее натуральное число? Его невозможно указать, ведь существует бесконечное множество натуральных чисел.

Сумма натуральных чисел есть натуральное число. Итак, сложение натуральных чисел a и b:

Произведение натуральных чисел есть натуральное число. Итак, произведение натуральных чисел a и b:

с - это всегда натуральное число.

Разность натуральных чисел Не всегда есть натуральное число. Если уменьшаемое больше вычитаемого, то разность натуральных чисел есть натуральное число, иначе - нет.

Частное натуральных чисел Не всегда есть натуральное число. Если для натуральных чисел a и b

где с - натуральное число, то это значит, что a делится на b нацело. В этом примере a - делимое, b - делитель, c - частное.

Делитель натурального числа - это натуральное число, на которое первое число делится нацело.

Каждое натуральное число делится на единицу и на себя.

Простые натуральные числа делятся только на единицу и на себя. Здесь имеется ввиду делятся нацело. Пример, числа 2; 3; 5; 7 делятся только на единицу и на себя. Это простые натуральные числа.

Единицу не считают простым числом.

Числа, которые больше единицы и которые не являются простыми, называют составными. Примеры составных чисел:

Единицу не считают составным числом.

Множество натуральных чисел составляют единица, простые числа и составные числа.

Множество натуральных чисел обозначается латинской буквой N.

Свойства сложения и умножения натуральных чисел:

переместительное свойство сложения

сочетательное свойство сложения

(a + b) + c = a + (b + c);

переместительное свойство умножения

сочетательное свойство умножения

(ab) c = a (bc);

распределительное свойство умножения

A (b + c) = ab + ac;

Целые числа

Целые числа - это натуральные числа, ноль и числа, противоположные натуральным.

Числа, противоположные натуральным - это целые отрицательные числа, например:

1; -2; -3; -4;...

Множество целых чисел обозначается латинской буквой Z.

Рациональные числа

Рациональные числа - это целые числа и дроби.

Любое рациональное число может быть представлено в виде периодической дроби. Примеры:

1,(0); 3,(6); 0,(0);...

Из примеров видно, что любое целое число есть периодическая дробь с периодом ноль.

Любое рациональное число может быть представлено в виде дроби m/n, где m целое число,n натуральное число. Представим в виде такой дроби число 3,(6) из предыдущего примера.


Информация этой статьи формирует общее представление о целых числах . Сначала дано определение целых чисел и приведены примеры. Далее рассмотрены целые числа на числовой прямой, откуда становится видно, какие числа называются целыми положительными числами, а какие – целыми отрицательными. После этого показано, как при помощи целых чисел описываются изменения величин, и рассмотрены целые отрицательные числа в смысле задолженности.

Навигация по странице.

Целые числа – определение и примеры

Определение.

Целые числа – это натуральные числа, число нуль, а также числа, противоположные натуральным.

Определение целых чисел утверждает, что любое из чисел 1 , 2 , 3 , …, число 0 , а также любое из чисел −1 , −2 , −3 , … является целым. Теперь мы легко можем привести примеры целых чисел . Например, число 38 – целое, число 70 040 – тоже целое, нуль – целое число (напомним, что нуль НЕ является натуральным числом, нуль – целое число), числа −999 , −1 , −8 934 832 – также являются примерами целых чисел.

Все целые числа удобно представлять как последовательность целых чисел, которая имеет следующий вид: 0, ±1, ±2, ±3, … Последовательность целых чисел можно записать и так: …, −3, −2, −1, 0, 1, 2, 3, …

Из определения целых чисел следует, что множество натуральных чисел является подмножеством множества целых чисел. Поэтому, любое натуральное число является целым, но не любое целое число является натуральным.

Целые числа на координатной прямой

Определение.

Целые положительные числа – это целые числа, которые больше нуля.

Определение.

Целые отрицательные числа – это целые числа, которые меньше нуля.

Целые положительные и отрицательные числа можно также определить по их положению на координатной прямой. На горизонтальной координатной прямой точки, координатами которых являются целые положительные числа, лежат правее начала отсчета. В свою очередь точки с целыми отрицательными координатами располагаются левее точки O .

Понятно, что множество всех целых положительных чисел представляет собой множество натуральных чисел. В свою очередь множество всех целых отрицательных чисел – это множество всех чисел, противоположных натуральным числам.

Отдельно обратим Ваше внимание на то, что любое натуральное число мы можем смело назвать целым, а любое целое число мы НЕ можем назвать натуральным. Натуральным мы можем назвать лишь любое целое положительное число, так как целые отрицательные числа и нуль не являются натуральными.

Целые неположительные и целые неотрицательные числа

Дадим определения целых неположительных чисел и целых неотрицательных чисел.

Определение.

Все целые положительные числа вместе с числом нуль называют целыми неотрицательными числами .

Определение.

Целые неположительные числа – это все целые отрицательные числа вместе с числом 0 .

Другими словами, целое неотрицательное число – это целое число, которое больше нуля, либо равно нулю, а целое неположительное число – это целое число, которое меньше нуля, либо равно нулю.

Примерами целых неположительных чисел являются числа −511 , −10 030 , 0 , −2 , а в качестве примеров целых неотрицательных чисел приведем числа 45 , 506 , 0 , 900 321 .

Наиболее часто термины «целые неположительные числа» и «целые неотрицательные числа» используют для краткости изложения. Например, вместо фразы «число a целое, причем a больше нуля или равно нулю» можно сказать «a – целое неотрицательное число».

Описание изменения величин при помощи целых чисел

Пришло время поговорить о том, для чего вообще нужны целые числа.

Основное предназначение целых чисел заключается в том, что с их помощью удобно описывать изменение количества каких-либо предметов. Разберемся с этим на примерах.

Пусть на складе находится некоторое количество деталей. Если на склад привезут еще, к примеру, 400 деталей, то количество деталей на складе увеличится, а число 400 выражает это изменение количества в положительную сторону (в сторону увеличения). Если же со склада заберут, например, 100 деталей, то количество деталей на складе уменьшится, а число 100 будет выражать изменение количества в отрицательную сторону (в сторону уменьшения). На склад не будут привозить детали, и не будут увозить детали со склада, то можно говорить о неизменности количестве деталей (то есть можно будет говорить о нулевом изменении количества).

В приведенных примерах изменение количества деталей можно описать при помощи целых чисел 400 , −100 и 0 соответственно. Положительное целое число 400 показывает изменение количества в положительную сторону (увеличение). Отрицательное целое число −100 выражает изменение количества в отрицательную сторону (уменьшение). Целое число 0 показывает, что количество осталось без изменения.

Удобство использования целых чисел по сравнению с использованием натуральных чисел заключается в том, что не нужно явно указывать увеличивается количество или уменьшается, - целое число определяет изменение количественно, а знак целого числа указывает направление изменения.

Целые числа также могут выражать не только изменение количества, но и изменение какой-либо величины. Разберемся с этим на примере изменения температуры.

Повышение температуры, скажем, на 4 градуса выражается положительным целым числом 4 . Понижение температуры, например, на 12 градусов можно описать отрицательным целым числом −12 . А неизменность температуры – это ее изменение, определяемое целым числом 0 .

Отдельно нужно сказать о трактовке отрицательных целых чисел как величины долга. Например, если у нас есть 3 яблока, то целое положительное число 3 показывает количество яблок, которыми мы владеем. С другой стороны, если мы должны кому-либо отдать 5 яблок, а у нас их нет в наличии, то эту ситуацию можно описать при помощи отрицательного целого числа −5 . В этом случае мы «обладаем» −5 яблоками, знак минус указывает на долг, а число 5 определяет долг количественно.

Понимание отрицательного целого числа в качестве долга позволяет, например, обосновать правило сложения отрицательных целых чисел . Приведем пример. Если кто-то должен 2 яблока одному человеку и одно яблоко – другому, то общий долг составляет 2+1=3 яблока, поэтому −2+(−1)=−3 .

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.

Словосочетание «числовые множества » довольно часто встречается в учебниках математики. Там очень часто можно встретить фразы такого плана:

«Бла-бла-бла, где принадлежит множеству натуральных чисел».

Частенько вместо окончания фразы можно увидеть вот такую запись . Она означает то же что и текст немного выше — число принадлежит множеству натуральных чисел. Многие довольно часто не придают внимания в каком множестве определена та или иная переменная. В результате применяться совершенно неверные методы при решении задачи или доказательстве теоремы. Это происходит из-за того, что свойства чисел принадлежащих различным множествам могут иметь различия.

Числовых множеств не так уж и много. Ниже можно увидеть определения различных числовых множеств.

Множество натуральных чисел включает в себя все целые числа больше нуля — положительные целые числа.

Например: 1, 3, 20, 3057. Множество не включает в себя цифру 0.

В это числовое множество входят все целые числа больше и меньше нуля, а так же ноль .

Например: -15, 0, 139.

Рациональные числа, вообще говоря, представляют собой множество дробей, которые не сокращаются (если дробь сокращается, то это уже будет целое число, и для этого случая не стоит вводить еще одно числовое множество).

Пример чисел входящих в рациональное множество: 3/5, 9/7, 1/2.

,

где – конечная последовательность цифр целой части числа, принадлежащего множеству вещественных чисел. Эта последовательность является конечной, то есть количество цифр в целофй части вещественного числа конечное количество.

– бесконечная последовательность чисел, стоящих в дробной части вещественного числа. Выходит, что в дробной части присутствует бесконечное количество чисел.

Такие числа невозможно представить в виде дроби. В противном случае, подобное число можно было бы отнести к множеству рациональных чисел.

Примеры вещественных чисел:

Давайте рассмотрим значение корня из двух внимательнее. В целочисленной части представлена только одна цифра — 1, поэтому мы можем записать:

В дробной части (после точки) последовательно идут числа 4, 1, 4, 2 и так далее. Поэтому для первых четырех цифр можно записать:

Смею надеяться, что теперь запись определения множества вещественных чисел стала понятней.

Заключение

Следует помнить, что одна и та же функция может проявлять совершенно разные свойства в зависимости от того к какому множеству будет принадлежать переменная. Так что помните основы – они вам пригодятся.

Post Views: 5 198

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Чтобы НАМНОГО упростить себе жизнь когда надо что-то вычислить, чтобы выиграть драгоценное время на ОГЭ или ЕГЭ, чтобы сделать меньше глупых ошибок - читай этот раздел!

Вот чему ты научишься:

  • как быстрее, легче и точнее считать, используя группировку чисел при сложении и вычитании,
  • как без ошибок, быстро умножать и делить, используя правила умножения и признаки делимости ,
  • как значительно ускорить расчеты с помощью наименьшего общего кратного (НОК) и наибольшего общего делителя (НОД).

Владение приемами этого раздела может перевесить чашу весов в ту или иную сторону...поступишь ты в ВУЗ мечты или нет, придется тебе или твоим родителям платить огромные деньги за обучение или ты поступишь на бюджет.

Let"s dive right in... (Поехали!)

P.S. ПОСЛЕДНИЙ ЦЕННЫЙ СОВЕТ...

Множество целых чисел состоит из 3 частей:

  1. натуральные числа (рассмотрим их подробнее чуть ниже);
  2. числа, противоположные натуральным (все станет на свои места, как только ты узнаешь, что такое натуральные числа);
  3. ноль - " " (куда уж без него?)

буквой Z.

Натуральные числа

«Бог создал натуральные числа, всё остальное - дело рук человеческих» (c) Немецкий математик Кронекер.

Натуральные числа - это числа, которые мы употребляем для счета предметов и именно на этом основывается их история возникновения - необходимости считать стрелы, шкуры и т.д.

1, 2, 3, 4... n

буквой N.

Соответственно, в это определение не входит (не можешь же ты посчитать то, чего нет?) и тем более не входят отрицательные значения (разве бывает яблоко?).

Кроме этого, не входят и все дробные числа (мы также не можем сказать « у меня есть ноутбука», или «я продал машины»)

Любое натуральное число можно записать с помощью 10 цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Таким образом, 14 - это не цифра. Это число. Из каких цифр оно состоит? Правильно, из цифр и.

Сложение. Группировка при сложении чтобы быстрей считать и меньше ошибаться

Что интересного ты можешь сказать про эту процедуру? Конечно, ты сейчас ответишь «от перестановки слагаемых значение суммы не меняется». Казалось бы, примитивное, знакомое с первого класса правило, однако, при решении больших примеров оно моментально забывается!

Не забывай про него - используй группировку , чтобы облегчить себе процесс подсчета и снизить вероятность ошибок, ведь на ЕГЭ калькулятора у тебя не будет.

Смотри сам, какое выражение легче сложить?

  • 4 + 5 + 3 + 6
  • 4 + 6 + 5 + 3

​​Конечно же второе! Хотя результат один и тот же. Но! считая вторым способом у тебя меньше шансов ошибиться и ты все сделаешь быстрее!

Итак, ты в уме считаешь вот так:

4 + 5 + 3 + 6 = 4 + 6 + 5 + 3 = 10 + 5 + 3 = 18

Вычитание. Группировка при вычитании, чтобы быстрее считать и меньше ошибаться

При вычитании мы также можем группировать вычитаемые числа, например:

32 - 5 - 2 - 6 = (32 - 2) - 5 - 6 = 30 - 5 - 6 = 19

А что, если вычитание чередуется в примере со сложением? Так же можно группировать, ответишь ты, и это правильно. Только прошу, не забывай о знаках перед числами, например: 32 - 5 - 2 - 6 = (32 - 2) - (6 + 5) = 30 - 11 = 19

Помни: неправильно проставленные знаки приведут к ошибочному результату.

Умножение. Как умножать в уме

Очевидно, что от перемены мест множителей значение произведения также не изменится:

2 ⋅ 4 ⋅ 6 ⋅ 5 = (2 ⋅ 5 ) (4 ⋅ 6 ) = 1 0 ⋅ 2 4 = 2 4 0

Я не буду говорить тебе «используй это при решении примеров» (ты и сам понял намек, правда?), а лучше расскажу, как быстро умножать некоторые числа в уме. Итак, внимательно смотри таблицу:

И еще немного об умножении. Конечно, ты помнишь два особых случая … Догадываешься о чем я? Вот об этом:

Ах да, еще рассмотрим признаки делимости . Всего существует 7 правил по признакам делимости, из которых первые 3 ты точно уже знаешь!

А вот остальные совсем не сложно запомнить.

7 признаков делимости чисел, которые помогут тебе быстро считать в уме!

  • Первые три правила ты, конечно же, знаешь.
  • Четвертое и пятое легко запомнить - при делении на и мы смотрим, делится ли на это сумма цифр, составляющих число.
  • При делении на мы обращаем внимание на две последние цифры числа - делится ли число, которое они составляют на?
  • При делении на число должно одновременно делиться на и на. Вот и вся премудрость.

Ты сейчас думаешь - «зачем мне все это»?

Во-первых, ЕГЭ проходит без калькулятора и данные правила помогут тебе сориентироваться в примерах.

А во-вторых, ты же слышал задачи про НОД и НОК ? Знакомая аббревиатура? Начнем вспоминать и разбираться.

Наибольший общий делитель (НОД) - нужен для сокращения дробей и быстрых вычислений

Допустим, у тебя есть два числа: и. На какое наибольшее число делятся оба этих числа? Ты, не задумываясь, ответишь, потому что знаешь, что:

12 = 4 * 3 = 2 * 2 * 3

8 = 4 * 2 = 2 * 2 * 2

Какие цифры в разложении общие? Правильно, 2 * 2 = 4. Вот и твой ответ был. Держа в голове этот простой пример, ты не забудешь алгоритм, как находить НОД . Попробуй «выстроить» его у себя в голове. Получилось?

Чтобы найти НОД необходимо:

  1. Разложить числа на простые множители (на такие числа, которые нельзя разделить ни на что больше, кроме самого себя или на, например, 3, 7, 11, 13 и т.д.).
  2. Перемножить их.

Понимаешь, зачем нам нужны были признаки делимости? Чтобы ты посмотрел на число и мог начать делить без остатка.

Для примера найдем НОД чисел 290 и 485

Первое число - .

Глядя на него, ты сразу можешь сказать, что оно делится на, запишем:

больше разделить ни на что нельзя, а вот можно - и, получаем:

290 = 29 * 5 * 2

Возьмем еще одно число - 485.

По признакам делимости оно должно без остатка делиться на, так как на заканчивается. Делим:

Проанализируем изначальное число.

  • На оно делиться не может (последняя цифра - нечетная),
  • - не делится на, значит число тоже не делится на,
  • на и на также не делится (сумма цифр, входящих в число, не делится на и на)
  • на тоже не делится, так как не делится на и,
  • на тоже не делится, так как не делится на и.
  • нельзя разделить на нацело,

Значит, число можно разложить только на и.

А теперь найдем НОД этих чисел (и). Какое это число? Правильно, .

Потренируемся?

Задача №1. Найти НОД чисел 6240 и 6800

1) Делю сразу на, так как оба числа 100% делятся на:

Задача №2. Найти НОД чисел 345 и 324

Здесь не могу быстро найти хоть один общий делитель, так что просто раскладываю на простые множители (как можно меньше):

Наименьшее общее кратное (НОК) - экономит время, помогает решить задачи нестандартно

Допустим, у тебя есть два числа - и. Какое существует самое маленькое число, которое делится и без остатка (то есть нацело)? Сложно представить? Вот тебе визуальная подсказка:

Ты же помнишь, что обозначается буквой? Правильно, как раз целые числа. Так какое наименьшее число подходит на место х? :

В данном случае.

Из этого простого примера вытекает несколько правил.

Правила быстрого нахождения НОК

Правило 1. Если одно из двух натуральных чисел делится на другое число, то большее из этих двух чисел является их наименьшим общим кратным.

Найди у следующих чисел:

  • НОК (7;21)
  • НОК (6;12)
  • НОК (5;15)
  • НОК (3;33)

Конечно, ты без труда справился с этой задачей и у тебя получились ответы - , и.

Заметь, в правиле мы говорим о ДВУХ числах, если чисел будет больше, то правило не работает.

Например, НОК (7;14;21) не равно 21, так как не делится без остатка на.

Правило 2. Если два (или более двух) числа являются взаимно простыми, то наименьшее общее кратное равно их произведению.

Найди НОК у следующих чисел:

  • НОК (1;3;7)
  • НОК (3;7;11)
  • НОК (2;3;7)
  • НОК (3;5;2)

Посчитал? Вот ответы - , ; .

Как ты понимаешь, не всегда можно так легко взять и подобрать этот самый х, поэтому для чуть более сложных чисел существует следующий алгоритм:

Потренируемся?

Найдем наименьшее общее кратное - НОК (345; 234)

Найди наименьшее общее кратное (НОК) самостоятельно

Какие ответы у тебя получились?

Вот, что вышло у меня:

Сколько времени ты потратил на нахождение НОК ? Мое время - 2 минуты, правда я знаю одну хитрость , которую предлагаю тебе открыть прямо сейчас!

Если ты очень внимателен, то ты наверное заметил, что по заданным числам мы уже искали НОД и разложение на множители этих чисел ты мог взять из того примера, тем самым упростив себе задачу, но это далеко не все.

Посмотри на картинку, возможно к тебе придут еще какие-нибудь мысли:

Ну что? Сделаю подсказку: попробуй перемножить НОК и НОД между собой и запиши все множители, которые будут при перемножении. Справился? У тебя должна получиться вот такая цепочка:

Присмотрись к ней повнимательней: сравни множители с тем, как раскладываются и.

Какой вывод ты можешь сделать из этого? Правильно! Если мы перемножим значения НОК и НОД между собой, то мы получим произведение этих чисел.

Соответственно, имея числа и значение НОД (или НОК ), мы можем найти НОК (или НОД ) по такой схеме:

1. Находим произведение чисел:

2. Делим получившееся произведение на наш НОД (6240; 6800) = 80:

Вот и все.

Запишем правило в общем виде:

Попробуй найти НОД , если известно, что:

Справился? .

Отрицательные числа - «лжечисла» и их признание человечеством.

Как ты уже понял, это числа, противоположные натуральным, то есть:

Отрицательные числа можно складывать, вычитать, умножать и делить - все как в натуральных. Казалось бы, что в них такого особенного? А дело в том, что отрицательные числа «отвоевывали» себе законное место в математике аж до XIX века (до этого момента было огромное количество споров, существуют они или нет).

Само отрицательное число возникло из-за такой операции с натуральными числами, как «вычитание». Действительно, из вычесть - вот и получается отрицательное число. Именно поэтому, множество отрицательных чисел часто называют «расширением множества натуральных чисел ».

Отрицательные числа долго не признавались людьми. Так, Древний Египет, Вавилон и Древняя Греция - светочи своего времени, не признавали отрицательных чисел, а в случае получения отрицательных корней в уравнении (например, как у нас), корни отвергались как невозможные.

Впервые отрицательные числа получили свое право на существование в Китае, а затем в VII веке в Индии. Как ты думаешь, с чем связано это признание? Правильно, отрицательными числами стали обозначать долги (иначе - недостачу). Считалось, что отрицательные числа - это временное значение, которое в результате изменится на положительное (то есть, деньги кредитору все же вернут). Однако, индийский математик Брахмагупта уже тогда рассматривал отрицательные числа наравне с положительными.

В Европе к полезности отрицательных чисел, а также к тому, что они могут обозначать долги, пришли значительно позже, эдак, на тысячелетие. Первое упоминание замечено в 1202 году в «Книге абака» Леонарда Пизанского (сразу говорю - к Пизанской башне автор книги отношения никакого не имеет, а вот числа Фибоначчи - это его рук дело (прозвище Леонардо Пизанского - Фибоначчи)). Далее европейцы пришли к тому, что отрицательные числа могут обозначать не только долги, но и нехватку чего бы то ни было, правда, признавали это не все.

Так, в XVII веке Паскаль считал что. Как думаешь, чем он это обосновывал? Верно, «ничто не может быть меньше НИЧЕГО». Отголоском тех времен остается тот факт, что отрицательное число и операция вычитания обозначается одним и тем же символом - минусом «-». И правда: . Число « » положительное, которое вычитается из, или отрицательное, которое суммируется к?... Что-то из серии «что первое: курица или яйцо?» Вот такая вот, своеобразная эта математическая философия.

Отрицательные числа закрепили свое право на существование с появлением аналитической геометрии, иначе говоря, когда математики ввели такое понятие как числовая ось.

Именно с этого момента наступило равноправие. Однако все равно вопросов было больше чем ответов, например:

пропорция

Данная пропорция носит название «парадокс Арно». Подумай, что в ней сомнительного?

Давай рассуждать вместе « » больше, чем « » верно? Таким образом, согласно логике, левая часть пропорции должна быть больше, чем правая, но они равны… Вот он и парадокс.

В итоге, математики договорились до того, что Карл Гаусс (да, да, это тот самый, который считал сумму (или) чисел) в 1831 году поставил точку - он сказал, что отрицательные числа имеют те же права, что и положительные, а то, что они применимы не ко всем вещам, ничего не означает, так как дроби так же не применимы ко многим вещам (не бывает так, что яму роют землекопа, нельзя купить билета в кино и т.д.).

Успокоились математики только в XIX веке, когда Уильямом Гамильтоном и Германом Грассманом была создана теория отрицательных чисел.

Вот такие они спорные, эти отрицательные числа.

Возникновение «пустоты», или биография нуля.

В математике - особенное число. С первого взгляда, это ничто: прибавить, отнять - ничего не изменится, но стоит только приписать его справа к « », и полученное число будет в раз больше изначального. Умножением на ноль мы все превращаем в ничто, а разделить на «ничто», то есть, мы не можем. Одним словом, волшебное число)

История нуля длинная и запутанная. След нуля найден в сочинениях китайцев во 2 тыс. н.э. и ещё раньше у майя. Первое использование символа нуля, каковым он является в наши дни, было замечено у греческих астрономов.

Существует множество версий, почему было выбрано именно такое обозначение «ничего». Некоторые историки склоняются к тому, что это омикрон, т.е. первая буква греческого слова ничто - ouden. Согласно другой версии, жизнь символу ноля дало слово «обол» (монета, почти не имеющая ценности).

Ноль (или нуль) как математический символ впервые появляется у индийцев (заметь, там же стали «развиваться» отрицательные числа). Первые достоверные свидетельства о записи нуля относятся к 876 г., и в них « » - составляющая числа.

В Европу ноль также пришел с запозданием - лишь в 1600г., и также как и отрицательные числа, сталкивался с сопротивлением (что поделаешь, такие они, европейцы).

«Нуль часто ненавидели, издавна боялись, а то и запрещали» — пишет американский математик Чарльз Сейф. Так, турецкий султан Абдул-Хамид II в конце XIXв. приказал своим цензорам вычеркнуть из всех учебников химии формулу воды H2O, принимая букву «О» за нуль и не желая, чтобы его инициалы порочились соседством с презренным нулём».

На просторах интернета можно встретить фразу: «Ноль - самая могущественная сила во Вселенной, он может всё! Ноль создаёт порядок в математике, и он же вносит в неё хаос». Абсолютно верно подмечено:)

Краткое изложение раздела и основные формулы

Множество целых чисел состоит из 3 частей:

  • натуральные числа (рассмотрим их подробнее чуть ниже);
  • числа, противоположные натуральным;
  • ноль - " "

Множество целых чисел обозначается буквой Z.

1. Натуральные числа

Натуральные числа - это числа, которые мы употребляем для счета предметов.

Множество натуральных чисел обозначается буквой N.

В операциях с целыми числами понадобится умение находить НОД и НОК.

Наибольший общий делитель (НОД)

Чтобы найти НОД необходимо:

  1. Разложить числа на простые множители (на такие числа, которые нельзя разделить ни на что больше, кроме самого себя или на, например, и т.д.).
  2. Выписать множители, которые входят в состав обоих чисел.
  3. Перемножить их.

Наименьшее общее кратное (НОК)

Чтобы найти НОК необходимо:

  1. Разложить числа на простые множители (это ты уже отлично умеешь делать).
  2. Выписать множители входящие в разложение одного из чисел (лучше брать самую длинную цепочку).
  3. Добавить к ним недостающие множители из разложений остальных чисел.
  4. Найти произведение получившихся множителей.

2. Отрицательные числа

это числа, противоположные натуральным, то есть:

Теперь я хочу слышать тебя...

Надюсь ты оценил супер-полезные "трюки" этого раздела и понял как они помогут тебе на экзамене.

И что более важно - в жизни. Я об этом не говорю, но, поверь, этот так. Умение быстро и без ошибок считать спасает во многих жизненных ситуациях.

Теперь твой ход!

Напиши, будешь ли ты применять методы группировки, признаки делимости, НОД и НОК в расчетах?

Может быть ты применял их ранее? Где и как?

Возможно у тебя есть вопросы. Или предложения.

Напиши в комментариях как тебе статья.

И удачи на экзаменах!

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Если к ряду натуральных чисел приписать слева число 0, то получится ряд положительных целых чисел :

0, 1, 2, 3, 4, 5, 6, 7, ...

Целые отрицательные числа

Рассмотрим небольшой пример. На рисунке слева изображён термометр, который показывает температуру 7° тепла. Если температура понизится на 4°, то термометр будет показывать 3° тепла. Уменьшению температуры соответствует действие вычитания:

Если температура понизится на 7°, то термометр будет показывать 0°. Уменьшению температуры соответствует действие вычитания:

Если же температура понизится на 8°, то термометр покажет -1° (1° мороза). Но результат вычитания 7 - 8 нельзя записать с помощью натуральных чисел и нуля.

Проиллюстрируем вычитание на ряде целых положительных чисел:

1) От числа 7 отсчитаем влево 4 числа и получим 3:

2) От числа 7 отсчитаем влево 7 чисел и получим 0:

Отсчитать в ряду положительных целых чисел от числа 7 влево 8 чисел нельзя. Чтобы действие 7 - 8 стало выполнимым, расширим ряд положительных целых чисел. Для этого влево от нуля запишем (справа налево) по порядку все натуральные числа, добавляя к каждому из них знак - , показывающий, что это число стоит слева от нуля.

Записи -1, -2, -3, ... читают минус 1 , минус 2 , минус 3 и т. д.:

5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

Полученный ряд чисел называют рядом целых чисел . Точки слева и справа в этой записи означают, что ряд можно продолжать неограниченно вправо и влево.

Справа от числа 0 в этом ряду расположены числа, которые называют натуральными или целыми положительными (кратко - положительными ).

Слева от числа 0 в этом ряду расположены числа, которые называют целыми отрицательными (кратко - отрицательными ).

Число 0 целое, но не является ни положительным, ни отрицательным числом. Оно разделяет положительные и отрицательные числа.

Следовательно, ряд целых чисел состоит из целых отрицательных чисел, нуля и целых положительных чисел .

Сравнение целых чисел

Сравнить два целых числа - значит узнать какое из них больше, какое меньше, или определить, что числа равны.

Сравнивать целые числа можно с помощью ряда целых чисел, так как числа в нём расположены от меньшего к большему, если двигаться по ряду слева направо. Поэтому в ряду целых чисел можно заменить запятые на знак меньше:

5 < -4 < -3 < -2 < -1 < 0 < 1 < 2 < 3 < 4 < 5 < ...

Следовательно, из двух целых чисел больше то число, которое в ряду стоит правее, и меньше то, которое стоит левее , значит:

1) Любое положительное число больше нуля и больше любого отрицательного числа:

1 > 0; 15 > -16

2) Любое отрицательное число меньше нуля:

7 < 0; -357 < 0

3) Из двух отрицательных чисел больше то, которое в ряду целых чисел стоит правее.