Блокаторы рецепторов ангиотензина – что это? Ренин ангиотензиновая система Метаболические эффекты и классификация.

В крови расщепляет другой белок ангиотензиноген (АТГ) с образованием белка ангиотензина 1 (АТ1) , состоящего из 10 аминокислот (декапептид).

Другой фермент крови – АПФ (Ангиотензин превращающий фермент, Ангиотензинконвертин энзим (АСЕ), Конвертирующий фактор Е лёгких) отщепляет от АТ1 две хвостовые аминокислоты с образованием белка из 8 аминокислот (октапептид), который называется ангиотензин 2 (АТ2) . Способностью образовывать из АТ1 ангиотензин 2 обладают и другие ферменты – химазы, катепсин G, тонин и другие сериновые протеазы, но в меньшей степени. В эпифизе головного мозга содержится большое количество химазы, которая превращает АТ1 в АТ2. В основном ангиотензин 2 образуется из ангиотензина 1 под влиянием АПФ. Образование АТ2 из АТ1с помощью химаз, катепсина G, тонина и других сериновых протеаз, называется альтернативным путём образования АТ2. АПФ присутствует в крови и во всех тканях организма, но больше всего синтезируется АПФ в лёгких. АПФ является кининазой, поэтому расщепляет кинины, которые в организме оказывают сосудорасширяющее действие.

Ангиотензин 2 оказывает своё действие на клетки организма через белки на поверхности клеток, которые называются ангиотензин рецепторами (АТ рецепторами). АТ-рецепторы бывают разных типов: АТ1 рецепторы, АТ2 рецепторы, АТ3 рецепторы, АТ4 рецепторы и другие. Наибольшее сродство АТ2 имеет к АТ1 рецепторам. Поэтому в первую очередь АТ2 вступает в соединение с АТ1 рецепторами. В результате этого соединения происходят процессы, которые приводят к повышению артериального давления (АД). Если уровень АТ2 высок, а свободных АТ1 рецепторов нет (не связанных с АТ2), то АТ2 соединяется с АТ2 рецепторами, к которым имеет меньшее сродство. Соединение АТ2 с АТ2 рецепторами запускает противоположные процессы, которые приводят к понижению АД.

Ангиотензин 2 (АТ2) соединяясь с АТ1 рецепторами:

  1. оказывает на сосуды очень сильное и продолжительное сосудосуживающее действие (до нескольких часов), увеличивая тем самым сопротивление сосудов, а, значит, и артериальное давление (АД). В результате соединения АТ2 с АТ1 рецепторами клеток кровеносных сосудов, запускаются химические процессы, в результате которых происходит сокращение гладкомышечных клеток средней оболочки, сосуды сужаются (происходит спазм сосудов), внутренний диаметр сосуда (просвет сосуда) уменьшается, сопротивление сосуда увеличивается. В дозе всего лишь 0,001 мг АТ2 может увеличить АД более чем на 50 мм.рт.ст.
  2. инициирует задержку натрия и воды в организме, что увеличивает объём циркулирующей крови, а, значит, и АД. Ангиотензин 2 действует на клетки клубочковой зоной надпочечников. В результате этого действия клетки клубочковой зоны надпочечников начинают синтезировать и выделять в кровь гормон альдостерон (минералокортикоид). АТ2 способствует образованию альдостерона из кортикостерона через действие на альдостеронсинтетазу. Альдостерон усиливает реабсорбцию (поглощение) натрия, а, значит, и воды из почечных канальцев в кровь. Это приводит:
    • к задержке воды в организме, а, значит, – к увеличению объёма циркулирующей крови и к обусловленному этим, повышению АД;
    • задержка в организме натрия приводит к тому, что натрий проникает в эндотелиальные клетки, покрывающие кровеносные сосуды изнутри. Увеличение концентрации натрия в клетке приводит к увеличению количества воды в клетке. Эндотелиальные клетки увеличиваются в объёме (набухают, «отекают»). Это приводит к сужению просвета сосуда. Уменьшение просвета сосуда увеличивает его сопротивление. Увеличение сопротивления сосуда увеличивает силу сердечных сокращений. Кроме того, задержка натрия – повышает чувствительность АТ1 рецепторов к АТ2. Это ускоряет и усиливает сосудосуживающее действие АТ2. Всё это суммарно приводит к повышению АД
  3. стимулирует клетки гипоталамуса на синтез и выделение в кровь антидиуретического гормона вазопрессина и клетками аденогипофиза (передней доли гипофиза) адренокортикотропного гормона (АКТГ). Вазопрессин оказывает:
    1. сосудосуживающее действие;
    2. задерживает воду в организме, усиливая в результате расширения межклеточных пор реабсорбцию (поглощение) воды из почечных канальцев в кровь. Это приводит к увеличению объёма циркулирующей крови;
    3. усиливает сосудосуживающее действие катехоламинов (адреналина, норадреналина) и ангиотензина 2.

    АКТГ стимулирует синтез клетками пучковой зоны коркового слоя надпочечников глюкокортикоидов: кортизола, кортизона, кортикостерона, 11-дезоксикортизола, 11-дегидрокортикостерона. Наибольшим биологическим действием обладает кортизол. Кортизол не обладает сосудосуживающим действием, но усиливает сосудосуживающее действие гормонов адреналина и норадреналина, синтезируемых клетками пучковой зоны коркового слоя надпочечников.

  4. является кининазой, поэтому расщепляет кинины, которые в организме оказывают сосудорасширяющее действие.

При увеличении уровня ангиотензина 2 в крови может появиться ощущение жажды, сухости во рту.

При продолжительном увеличении в крови и в тканях АТ2:

  1. гладкомышечные клетки кровеносных сосудов продолжительное время находятся в состоянии сокращения (сжатия). В результате этого развивается гипертрофия (утолщение) гладкомышечных клеток и избыточное образование коллагеновых волокон – стенки сосудов утолщаются, внутренний диаметр сосудов уменьшается. Таким образом, гипертрофия мышечного слоя кровеносных сосудов, развившаяся под продолжительным влиянием на сосуды избыточного количества АТ2 в крови, увеличивает периферическое сопротивление сосудов, а, значит, – и АД;
  2. сердце продолжительное время вынуждено сокращаться с большей силой, чтобы перекачивать больший объём крови и преодолевать большее сопротивление спазмированных сосудов. Это приводит сначала к развитию гипертрофии сердечной мышцы, к увеличению её размеров, к увеличению размеров сердца (больше левого желудочка), а затем происходит истощение клеток сердечной мышцы (миокардиоцитов), их дистрофия (миокардиодистрофия), заканчивающаяся их гибелью и замещением соединительной тканью (кардиосклероз), что в конечном итоге приводит к сердечной недостаточности;
  3. продолжительный спазм кровеносных сосудов в сочетании с гипертрофией мышечного слоя сосудов приводит к ухудшению кровоснабжения органов и тканей. От недостаточного кровоснабжения страдают в первую очередь почки, головной мозг, зрение, сердце. Недостаточное кровоснабжение почек на протяжении длительного времени приводит клетки почек к состоянию дистрофии (истощению), гибели и замещению соединительной тканью (нефросклероз, сморщивание почки), ухудшению функции почек (почечной недостаточности). Недостаточное кровоснабжение мозга приводит к ухудшению интеллектуальных возможностей, памяти, коммуникабельности, работоспособности, к эмоциональным расстройствам, расстройствам сна, головным болям, головокружениям, к ощущению шума в ушах, чувствительным расстройствам и другим расстройствам. Недостаточное кровоснабжение сердца – к ишемической болезни сердца (стенокардия, инфаркт миокарда). Недостаточное кровоснабжение сетчатки глаза – к прогрессирующему нарушению остроты зрения;
  4. уменьшается чувствительность клеток организма к инсулину (инсулинорезистентность клеток) – инициация возникновения и прогрессирования сахарного диабета 2 типа. Инсулинорезистентность приводит к увеличению инсулина в крови (гиперинсулинемия). Продолжительная гиперинсулинемия становится причиной стойкого повышения АД – артериальной гипертензии, так как приводит:
    • к задержке натрия и воды в организме – увеличение объёма циркулирующей крови, увеличение сопротивления сосудов, увеличение силы сердечных сокращений – повышение АД;
    • к гипертрофии гладкомышечных клеток сосудов – – повышение АД;
    • к повышенному содержанию ионов кальция внутри клетки – – повышение АД;
    • к повышению тонуса – , увеличение объёма циркулирующей крови, увеличение силы сердечных сокращений – повышение АД;

Ангиотензин 2 подвергается дальнейшему ферментативному разщеплению глютамил аминопептидазой с образованием Ангиотензина 3, состоящего из 7 аминокислот. У ангиотензина 3 сосудосуживающее действие слабее, чем у ангиотензина 2, а способность стимулировать синтез альдостерона – сильнее. Ангиотензин 3 ферментом аргинин аминопептидазой расщеплятся до ангиотензина 4, состоящего из 6 аминокислот.

Страница 38 из 102

Ингибиторы синтеза ангиотензина II

Это новая группа препаратов, которые включаются в метаболизм системы альдостерон - ангиотензин - ренин.
Каптоприл (капотен) ингибирует фермент, превращающий неактивный ангиотензин I в активный прессорный ангиотензин II и разрушает вазодепрессор брадикинин (схема 11). Каптоприл снижает АД при любом исходном уровне ренина, но в большей степени при повышенном, что дает возможность применять препарат при реноваскулярной гипертонии. Каптоприл повышает сердечный выброс, уменьшает конечно-диастолическое давление левого желудочка и снижает сосудистое сопротивление. Гипотензивный эффект потенцируется назначением диуретиков.


Схема 11

Каптоприл быстро абсорбируется из желудочно-кишечного тракта. Прием пищи уменьшает его биодоступность на 35-40%. Только 25-30% препарата связывается с белками плазмы. Максимальная концентрация его в крови достигается в течение 1 ч. Период полувыведения каптоприла составляет 4 ч, 50% дозы препарата экскретируется почками в неизмененном виде. В организме каптоприл не накапливается.
Препарат назначается внутрь начиная с дозы 25 мг 2 раза в день. При необходимости дозу повышают до 50 мг 2-4 раза в день. Максимальная суточная доза каптоприла - 450 мг/сут, а при тяжелой гипертонии - 300-600 мг/сут.
Наиболее частыми побочными эффектами являются кожная сыпь и нарушение вкусовой чувствительности. После прекращения лечения эти симптомы исчезают.
Эналаприлмалеат также снижает активность ангиотензин- превращающего фермента, уровень ренина и ангиотензина II в плазме крови.
Эналаприлмалеат при приеме внутрь гидролизуется и превращается в эналаприлат. Биодоступность его около 40%. После приема внутрь у здоровых и больных артериальной гипертонией препарат обнаруживается в крови через 1 ч и концентрация достигает максимума через 3-4 ч. В крови эналаприлмалеат на 50% связывается с белками, экскретируется с мочой, почечный клиренс его составляет 150±44 мл/мин. Выведение эналаприла из организма замедляется при снижении клубочковой фильтрации.
Препарат назначается при артериальной гипертонии, преимущественно реноваскулярного происхождения, и сердечной недостаточности в дозе 1-2 мг 3-4 раза в день. Побочные явления возникают очень редко.

Другие гипотензивные лекарственные средства

Ганглиоблокирующие препараты

Эти средства блокируют одновременно как симпатические, так и парасимпатические узлы. В связи с блокадой парасимпатических узлов могут возникать паралитический илеус, парез желчного пузыря, нарушения аккомодации глаз, импотенция. Поэтому эти препараты почти никогда не применяют длительно, а только парентерально при острых ситуациях - гипертонических кризах. Они противопоказаны при остром инфаркте миокарда, тромбозе мозговых артерий, феохромоцитоме.
К ганглиоблокирующим препаратам относятся пентамин, арфонад и бензогексоний.
Бензогексоний (гексоний) - Н-холиноблокатор симпатических и парасимпатических ганглиев. Гипотензивное действие бензогексония объясняется угнетением симпатических ганглиев, что влечет за собой расширение артериальных и венозных сосудов. Блокада парасимпатических ганглиев вызывает торможение моторики пищеварительного тракта, угнетение секреции желез желудка и слюнных желез, что определяет основные нежелательные эффекты препарата.
Бензогексоний снижает тонус артериол и уменьшает общее периферическое сопротивление. Значительно падает тонус вен и венозное давление, а также давление в легочной артерии и правом желудочке. В результате депонирования крови в расширенных венах брюшной полости и конечностей быстро уменьшается масса циркулирующей крови, поэтому в первые 2 ч после введения препарата наблюдается ортостатическая гипотония. Уменьшение венозного возврата крови приводит к разгрузке сердца, улучшению сократительной функции миокарда, что сопровождается увеличением сердечного выброса. Бензогексоний оказывает седативное действие на ЦНС, угнетает функциональное состояние симпатико-адреналовой системы, тормозит функцию щитовидной железы и повышает чувствительность к инсулину у больных сахарным диабетом.

Бензогексоний вводится внутримышечно или подкожно по 0,5-1 мл 2,5% раствора (12,5-25 мг). Разовая доза не должна превышать 100 мг, а суточная -400 мг. К препарату развивается привыкание.
Препарат показан при гипертонических кризах, сопровождающихся левожелудочковой недостаточностью, ретинопатией, энцефалопатией или кровоизлиянием в мозг.
Пентамин - ганглиоблокирующий препарат, механизм действия и фармакодинамика которого те же, что и бензогексония.
Пентамин назначается для внутривенного медленного введения в дозе 0,2-0,5-0,75 мл 5% раствора, разведенного в 20 мл изотонического раствора хлорида натрия или 5% раствора глюкозы. Внутримышечно вводят 0,3-0,5-1 мл 5% раствора пентамина. АД снижается в течение 5-15 мин с максимальным эффектом через 30 мин, эффект продолжается 4 ч, иногда до 12 ч.

А р ф о н а д (триметафана камфорсульфонат) - ганглиоблокатор быстрого действия.
Арфонад применяют в виде 0,1% раствора для капельного внутривенного вливания (500 мг арфонада на 500 мл 5% раствора глюкозы). Скорость введения препарата регулируют по уровню АД. Его действие начинается через 1 - 2 мин, достигает максимума через 5 мин и заканчивается через 10 мин после прекращения введения.
Препарат показан для экстренного снижения АД при острой гипертонической энцефалопатии, отеке мозга, расслаивающей аневризме аорты.
Аминазин (хлорпромазин) - фенотиазидное производное, othoсится к группе нейролептиков (больших транквилизаторов).
Гипотензивный эффект препарата обусловлен а-адреноблокирующим действием. В механизме гипотензии имеют значение и другие эффекты аминазина: угнетение центров гипоталамуса и спазмолитические свойства. Аминазин является сильным седативным средством, снижает психомоторное возбуждение, оказывает противорвотное действие, потенцирует действие снотворных, наркотиков, анальгетиков и местно-анестезирующих средств, а также уменьшает проницаемость капилляров, оказывает слабое противогистаминное действие.
Гипотензивный эффект аминазина часто сопровождается рефлекторной тахикардией. При длительном применении к нему развивается привыкание. Это касается седативного, гипотензивного и некоторых других эффектов, но не антипсихотического действия.
Из желудочно-кишечного тракта аминазин всасывается плохо. Продолжительность действия после однократного введения около 6 ч. В организме значительная часть аминазина подвергается биотрансформации. Сам препарат и разнообразные продукты его превращения выводятся почками и кишечником. Экскреция их происходит медленно, в течение многих дней.
Для лечения гипертонического криза вводят внутривенно капельно или струйно 1 мл 2,5% раствора аминазина в 20 мл 5 % раствора глюкозы. При инъекции препарата следует учитывать раздражающие свойства] аминазина: при внутривенном введении возможно повреждение эндотелия, при внутримышечном - возникновение болезненных инфильтратов. Во избежание этих явлений растворы аминазина разводят растворами новокаина, глюкозы, изотоническим раствором хлорида натрия.
К побочным эффектам при лечении аминазином относятся гипотензия, аллергические реакции со стороны кожи и слизистых оболочек, отеки лица и конечностей. Известны случаи желтухи, агранулоцитоза, пигментации кожи, явления паркинсонизма.
Препарат показан при гипертоническом кризе для снятия возбуждения и рвотных рефлексов.
Аминазин противопоказан при циррозе печени, гепатите, гемолитической желтухе, нефрите, нарушении функции кроветворных органов, прогрессирующих системных заболеваниях головного и спинного мозга, декомпенсированных пороках сердца, тромбоэмболической болезни. Нельзя назначать аминазин лицам, находящимся в коматозном состоянии, в том числе и в случаях, связанных с приемом барбитуратов, алкоголя, наркотиков, а также с целью купирозация возбуждения при острых травмах мозга.
Сульфат магния - спазмолитик миотропного действия. Гипотензивное действие препарата связано с прямым расширением гладких мышц кровеносных сосудов. Кроме того, при парентеральном введении он оказывает успокаивающее действие на ЦНС. В зависимости от дозы сульфата магния может наблюдаться седативный, противосудорожный, снотворный или наркотический эффект. В больших дозах препарат понижает возбудимость дыхательного центра и может вызвать паралич дыхания. Препарат плохо всасывается из желудочно-кишечного тракта, поэтому при введении его внутрь гипотензивный эффект не проявляется. Сульфат магния выделяется почками, в процессе его выделения отмечается усиление диуреза.
При гипертонических кризах медленно вводят внутримышечно или внутривенно 10-20 мл 20-25% раствора сульфата магния. Учитывая гипотензивное и противосудорожное действие препарата, его назначают при эклампсии и энцефалопатии.
При передозировке сульфата магния возможен паралич дыхания (в качестве антидота используют соли кальция, например 5-10 мл 10% раствора хлорида кальция). В больших дозах препарат может оказывать курареподобное действие (угнетение нервно-мышечной передачи возбуждения).
Дибазол - спазмолитик миотропного действия. Оказывает спазмолитическое действие на гладкомышечные органы. Дает гипотензивный эффект за счет расширения периферических сосудов и снижения сердечного выброса. Гипотензивная активность дибазола весьма умеренна, и эффект его непродолжителен.
При гипертонических кризах (преимущественно с гипо- или эукинетическим типом кровообращения) дибазол назначают внутривенно по 6 мл 1% раствора или по 6-12 мл 0,5% раствора. Препарат переносится больными хорошо.

Антагонисты кальция

В последние годы обращено внимание на способность нифедипина, верапамила и дилтиазема снижать периферическое сопротивление, что связано с уменьшением вхождения Са++ в клетки гладкой мускулатуры сосудов. Поэтому антагонисты Са++ нашли применение при лечении тяжелой гипертонии у лиц с низкой активностью ренина в крови и в пожилом возрасте (в связи с кардиопротективным эффектом). Для лечения применяют нифедипин в дозе 20-60 мг/сут нередко в сочетании с допегитом или В-блокаторами или верапамил в дозе 320 мг/сут. Дилтиазем назначают по 90-180 мг/сут.

В 1998 г. исполнилось 100 лет со дня открытия ренина шведским физиологом Р. Тигерштедтом. Спустя почти 50 лет после этого, в 1934 г., Гольдблатт и соавторы на модели ренинзависимой АГ впервые доказали ключевую роль этого гормона в регуляции уровня АД. Синтез ангиотензина II Браун-Менендесом (1939) и Пейджем (1940) явился еще одной ступенью на пути к оценке физиологической роли ренин-ангиотензи-новой системы. Разработка первых ингибиторов ренин-ангиотензиновой системы в 70-х годах (тепротида, саралазина, а затем - каптоприла, эналаприла и др.) впервые позволила повлиять на функции этой системы. Следующим событием стало создание соединений, селективно блокирующих рецепторы ангиотензина II. Их избирательная блокада является принципиально новым подходом к устранению негативных эффектов активации ренин-ангиотензиновой системы. Создание этих препаратов открыло новые перспективы в лечении АГ, сердечной недостаточности, диабетической нефропатии.

В соответствии с классическими представлениями основной эффекторный гормон ренин-ангиотензиновой системы ангиотензин II образуется в системном кровотоке в результате каскада биохимических реакций. В 1954 г. L. Skeggs и группа специалистов из Кливленда установили, что ангиотензин представлен в циркулирующей крови двумя формами: в виде декапептида и октапептида, впоследствии получивших название ангиотензин I и ангиотензин II.

Ангиотензин I образуется в результате его отщепления от ангиотензиногена, вырабатываемого клетками печени. Реакция осуществляется под действием ренина. В дальнейшем этот неактивный декаптид подвергается воздействию АПФ и в процессе химической трансформации превращается в активный октапептид ангиотензин II, являющийся мощным вазоконстрикоторным фактором.

Помимо ангиотензина II физиологические эффекты ренин-ангиотензиновой системы осуществляются еще несколькими биологически активными веществами. Наиболее важным из них является ангиотензин(1-7), образующийся преимущественно из ангиотензина I, а также (в меньшей степени) - из ангиотензина II. Гептапептид(1-7) оказывает вазодилатирующее и антипролиферативное действие. На секрецию альдостерона он, в отличие от ангиотензина II, не оказывает влияния.

Под воздействием протеиназ из ангиотензина II образуется еще несколько активных метаболитов - ангиотензин III, или ангиотензин(2-8) и ангиотензин IV, или ангиотензин(3-8). С ангиотензином III связаны процессы, способствующие повышению АД, - стимуляция рецепторов ангиотензина и образование альдостерона.

Исследования последних двух десятилетий показали, что ангиотензин II образуется не только в системном кровотоке, но и в различных тканях, где обнаружены все компоненты системы ренин-ангиотензин (ангиотензиноген, ренин, АПФ, рецепторы ангиотензина), а также выявлена экспрессия генов ренина и ангиотензина II. Значение тканевой системы обусловлено ее ведущей ролью в патогенетических механизмах формирования заболеваний сердечно-сосудистой системы на органном уровне.

В соответствии с концепцией о двухкомпонентности ренин-ангиотензиновой системы системному звену отводят ведущую роль в ее кратковременных физиологических эффектах. Тканевое звено ренин-ангиотензиновой системы обеспечивает долговременное действие на функцию и структуру органов. Вазоконстрикция и освобождение альдостерона в ответ на стимуляцию ангиотензином являются немедленными реакциями, возникающими в течение секунд, в соответствии с их физиологической ролью, которая заключается в поддержке кровообращения после кровопотери, дегидратации или при ортостатических изменениях. Другие эффекты - гипертрофия миокарда, сердечная недостаточность - развиваются в течение длительного периода. Для патогенеза хронических заболеваний сердечно-сосудистой системы медленные ответы, осуществляемые на тканевом уровне, более важны, чем быстрые, реализуемые системным звеном ренин-ангиотензиновой системы.

Помимо АПФ-зависимого превращения ангиотензина I в ангиотензин II установлены альтернативные пути его образования. Было выявлено, что накопление ангиотензина II продолжается, несмотря на почти полную блокаду АПФ с помощью его ингибитора эналаприла. В последующем было установлено, что на уровне тканевого звена ренин-ангиотензиновой системы образование ангиотензина II происходит без участия АПФ. Превращение ангиотензина I в ангиотензин II осуществляется с участием других ферментов - тонина, химаз и катепсина. Эти специфические протеиназы способны не только конвертировать ангиотензин I в ангиотензин II, но и отщеплять ангиотензин II непосредственно от ангиотензиногена без участия ренина. В органах и тканях ведущее место занимают независимые от АПФ пути образования ангиотензина II. Так, в миокарде человека около 80% его образуется без участия АПФ.

Рецепторы ангиотензина II

Основные эффекты ангиотензина II осуществляются через его взаимодействие со специфическими клеточными рецепторами. В настоящее время выделено несколько типов и подтипов ангиотензиновых рецепторов: АТ1, АТ2, АТ3 и АТ4. У человека обнаружены только АТ1, — и АТ2-рецепторы. Первый тип рецепторов подразделяется на два подтипа - АТ1А и АТ1В. Ранее считали, что АТ1А- и АТ2В-подтипы имеются только у животных, но в настоящее время они идентифицированы и у человека. Функции этих изоформ окончательно не ясны. АТ1А-рецепторы превалируют в гладкомышечных клетках сосудов, сердце, легких, яичниках и в гипоталамусе. Преобладание АТ1А-рецепторов в гладких мышцах сосудов свидетельствует об их роли в процессах вазоконстрикции. В связи с тем что АТ1В-рецепторы превалируют в надпочечниках, матке, передней доле гипофиза, можно полагать, что они вовлечены в процессы гормональной регуляции. Предполагается наличие АТ1С — подтипа рецепторов у грызунов, однако точная их локализация не установлена.

Известно, что все сердечно-сосудистые, а также экстракардиальные эффекты ангиотензина II опосредуются преимущественно через АТ1 -рецепторы.

Они обнаружены в тканях сердца, печени, мозга, почек, надпочечников, матки, эндотелиальных и гладкомышечных клетках, фибробластах, макрофагах, периферических симпатических нервах, в проводящей системе сердца.

Об АТ2 -рецепторах известно значительно меньше, чем о рецепторах АТ1-типа. АТ2 -рецептор впервые был клонирован в 1993 г., установлена его локализация на Х-хромосоме. Во взрослом организме АТ2-рецепторы представлены в высоких концентрациях в мозговом слое надпочечников, в матке и яичниках, обнаружены они также в сосудистом эндотелии, сердце и различных областях мозга. В эмбриональных тканях АТ2-рецепторы представлены значительно шире, чем во взрослых и являются в них преобладающими. Вскоре после рождения АТ2-рецептор «выключается» и активируется при определенных патологических состояниях, таких, как ишемия миокарда, сердечная недостаточность, повреждение сосудов. То, что АТ2-рецепторы наиболее широко представлены в тканях плода и их концентрация резко снижается в первые недели после рождения, свидетельствует об их роли в процессах, связанных с клеточным ростом, дифференциацией и развитием.

Считают, что АТ2-рецепторы опосредуют апоптоз - запрограммированную гибель клетки, являющуюся закономерным следствием процессов ее дифференциации и развития. Благодаря этому стимуляция АТ2-рецепторов оказывает антипролиферативное действие.

АТ2-рецепторы считают физиологическим противовесом АТ1-рецепторов. Очевидно, они контролируют избыточный рост, опосредованный через АТ1-рецепторы или другие факторы роста, а также уравновешивают вазоконстрикторный эффект стимуляции АТ1-рецепторов.

Полагают, что основным механизмом вазодилатации при стимуляции АТ2-рецепторов является образование оксида азота (NО) эндотелием сосудов.

Эффекты ангиотензина II

Сердце

Влияние ангиотензина II на сердце осуществляется как прямо, так и опосредованно - через повышение симпатической активности и концентрации альдостерона в крови, увеличение постнагрузки вследствие вазоконстрикции. Прямое действие ангиотензина II на сердце заключается в инотропном эффекте, а также в усилении роста кардиомиоцитов и фибробластов, что способствует гипертрофии миокарда.

Ангиотензин II участвует в процессах прогрессирования сердечной недостаточности, вызывая такие неблагоприятные эффекты, как повышение пред- и постнагрузки на миокард в результате веноконстрикции и сужения артериол с последующим увеличением венозного возврата крови к сердцу и повышением системного сосудистого сопротивления; альдостеронзависимую задержку жидкости в организме, ведущую к увеличению объема циркулирующей крови; активацию симпатико-адреналовой системы и стимуляцию процессов пролиферации и фиброэластоза в миокарде.

Сосуды

Взаимодействуя с АТ,-рецепторами сосудов, ангиотензин II оказывает вазоконстрикторное действие, приводящее к повышению АД.

Повышению ОПСС способствует также обусловленная ангиотензином II гипертрофия и гиперплазия гладкомышечных клеток, гиперпродукция коллагена стенкой сосудов, стимуляция синтеза эндотелина, а также инактивация NO-обусловленной релаксации сосудов.

Вазоконстрикторные эффекты ангиотензина II в различных отделах сосудистого русла неодинаковы. Наиболее выраженная вазоконстрикция вследствие его воздействия на АТ,-рецепторы наблюдается в сосудах брюшины, почек и кожи. Менее значимый вазоконстрикторный эффект проявляется в сосудах мозга, легких, сердца и скелетных мышц.

Почки

Почечные эффекты ангиотензина II играют существенную роль в регуляции уровня АД. Активация АТ1-рецепторов почек способствует задержке натрия и, следовательно, жидкости в организме. Этот процесс реализуется посредством увеличения синтеза альдостерона и прямого действия ангиотензина II на проксимальный отдел нисходящего канальца нефрона.

Сосуды почек, особенно эфферентные артериолы, чрезвычайно чувствительны к ангиотензину II. Повышая сопротивление афферентных почечных сосудов, ангиотензин II вызывает уменьшение почечного плазмотока и снижение скорости клубочковой фильтрации, а сужение эфферентных артериол способствует увеличению клубочкового давления и появлению протеинурии.

Локальное образование ангиотензина II оказывает определяющее влияние на регуляцию функции почек. Он прямо действует на почечные канальцы, повышая реабсорбцию Na+, способствует сокращению мезангиальных клеток, что уменьшает общую площадь поверхности клубочков.

Нервная система

Эффекты, обусловленные влиянием ангиотензина II на ЦНС, проявляются центральными и периферическими реакциями. Воздействие ангиотензина на центральные структуры вызывает повышение уровня АД, стимулирует высвобождение вазопрессина и адренокортикотропного гормона. Активация ангиотензиновых рецепторов периферических отделов нервной системы приводит к усилению симпатической нейротрансмиссии и угнетению обратного захвата норадреналина в нервных окончаниях.

Другие жизненно важные эффекты ангиотензина II - это стимуляция синтеза и освобождения альдостерона в клубочковой зоне надпочечников, участие в процессах воспаления, атерогенеза, регенерации. Все эти реакции играют важную роль в патогенезе заболеваний сердечно-сосудистой системы.

Препараты, блокирующие рецепторы ангиотензина II

Попытки достичь блокады ренин-ангиотензиновой системы на уровне рецепторов предпринимались давно. В 1972 г. был синтезирован пептидный антагонист ангиотензина II саралазин, однако он не нашел терапевтического применения из-за короткого периода полувыведения, частичной агонистической активности и необходимости внутривенного введения. Основой для создания первого непептидного блокатора ангиотензиновых рецепторов явились исследования японских ученых, которые в 1982 г. получили данные о наличии у производных имидазола способности блокировать АТ1-рецепторы. В 1988 г. группой исследователей во главе с Р. Timmermans был синтезирован непептидный антагонист ангиотензина II лосартан, ставший прототипом новой группы антигипертензивных средств. Применяется в клинике с 1994 г.

В дальнейшем был синтезирован ряд блокаторов АТ1-рецепторов, однако в настоящее время клиническое применение нашли только несколько препаратов. Они различаются между собой по биодоступности, уровню абсорбции, распределению в тканях, скорости элиминации, наличию или отсутствию активных метаболитов.

Основные эффекты блокаторов АТ1-рецепторов

Эффекты антагонистов ангиотензина II обусловлены их способностью связываться со специфическими рецепторами последнего. Обладая высокой специфичностью и предотвращая действие ангиотензина II на уровне тканей, эти препараты обеспечивают более полную блокаду ренин-ангиотензиновой системы по сравнению с ингибиторами АПФ. Преимуществом блокаторов АТ1-рецепторов перед ингибиторами АПФ является также отсутствие повышения уровня кининов при их применении. Это позволяет избежать таких нежелательных побочных реакций, обусловленных накоплением брадикинина, как кашель и ангионевротический отек.

Блокада АТ1-рецепторов антагонистами ангиотензина II приводит к подавлению его основных физиологических эффектов:

  • вазоконстрикции
  • синтеза альдостерона
  • освобождения катехоламинов из надпочечников и пресинаптических мембран
  • выделения вазопрессина
  • замедление процесса гипертрофии и пролиферации в стенке сосудов и миокарде

Гемодинамические эффекты

Основным гемодинамическим эффектом блокаторов АТ1-рецепторов является вазодилатация и, следовательно, снижение уровня АД.

Антигипертензивная эффективность препаратов зависит от исходной активности ренин-ангиотензиновой системы: у больных с высокой активностью ренина они действуют более сильно.

Механизмы, через которые антагонисты ангиотензина II снижают сосудистое сопротивление, следующие:

  • подавление вазоконстрикции и гипертрофии сосудистой стенки, обусловленных ангиотензином II
  • снижение реабсорбции Na+ вследствие прямого действия ангиотензина II на почечные канальцы и через снижение освобождения альдостерона
  • устранение симпатической стимуляции, обусловленной ангиотензином II
  • регуляция барорецепторных рефлексов за счет ингибирования структур ренин-ангиотензиновой системы в ткани головного мозга
  • увеличение содержания ангиотензина который стимулирует синтез вазодилататорных простагландинов
  • снижение высвобождения вазопрессина
  • модулирующее действие на эндотелий сосудов
  • усиление образования оксида азота эндотелием за счет активации АТ2-рецепторов и брадикининовых рецепторов повышенным уровнем циркулирующего ангиотензина II

Все блокаторы АТ1-рецепторов оказывают длительное антигипертензивное действие, которое продолжается в течение 24 ч. Оно проявляется через 2-4 нед терапии и достигает максимума к 6-8-й неделе лечения. Большинство препаратов оказывают дозозависимое снижение АД. Они не нарушают его нормальный суточный ритм. Имеющиеся клинические наблюдения свидетельствуют, что при длительном назначении блокаторов ангиотензиновых рецепторов (в течение 2 лет и более) устойчивость к их действию не развивается. Отмена лечения не приводит к «рикошетному» повышению АД. Блокаторы АТ1-рецепторов не снижают уровень АД, если он находится в пределах нормальных значений.

При сравнении с антигипертензивными препаратами других классов отмечено, что блокаторы АТ1-рецепторов, оказывая аналогичный антигипертензивный эффект, вызывают меньше побочных эффектов и лучше переносятся больными.

Действие на миокард

Снижение уровня АД при применении блокаторов АТ1-рецепторов не сопровождается повышением ЧСС. Это может быть обусловлено как уменьшением периферической симпатической активности, так и центральным действием препаратов вследствие угнетения активности тканевого звена ренин-ангиотензиновой системы на уровне структур головного мозга.

Особенно важное значение имеет блокада активности этой системы непосредственно в миокарде и сосудистой стенке, что способствует регрессии гипертрофии миокарда и сосудистой стенки. Блокаторы АТ1-рецепторов не только угнетают факторы роста, действие которых опосредуется через активацию АТ1-рецепторов, но и воздействуют на АТ2-рецепторы. Подавление АТ1-рецепторов способствует усилению стимуляции АТ2-рецепторов вследствие увеличения содержания ангиотензина II в плазме крови. Стимуляция АТ2-рецепторов замедляет процессы роста и гиперплазии гладких мышц сосудов и эндотелиальных клеток, а также подавляет синтез коллагена фибробластами.

Влияние блокаторов АТ1 -рецепторов на процессы гипертрофии и ремоделирования миокарда имеет терапевтическое значение влечении ишемической и гипертензивной кардиомиопатии, а также кардиосклероза у пациентов с ИБС. В экспериментальных работах показано, что препараты этого класса повышают коронарный резерв. Это связано с тем, что колебания коронарного кровотока зависят от тонуса коронарных сосудов, диастолического перфузионного давления, конечно-диастолического давления в ЛЖ-факторов, модулируемых антагонистами ангиотензина II. Блокаторы АТ1-рецепторов также нейтрализуют участие ангиотензина II в процессах атерогенеза, уменьшая атеросклеротическое поражение сосудов сердца.

Действие на почки

Почки - орган-мишень при АГ, на функцию которого блокаторы АТ1-рецепторов оказывают существенное влияние. Блокада АТ1-рецепторов в почках способствует снижению тонуса эфферентных артериол и увеличению почечного плазмотока. При этом скорость клубочковой фильтрации не изменяется или увеличивается.

Блокаторы АТ1-рецепторов, способствуя дилатации эфферентных почечных артериол и уменьшению внутриклубочкового давления, а также подавляя почечные эффекты ангиотензина II (повышение реабсорбции натрия, нарушение функции мезангиальных клеток, активация процессов склерозирования клубочков), предупреждают прогрессирование почечной недостаточности. Благодаря избирательному снижению тонуса эфферентных артериол и, следовательно, снижению внутриклубочкового давления, препараты уменьшают протеинурию у больных с гипертензивной и диабетической нефропатией.

Однако необходимо помнить, что у пациентов с односторонним стенозом почечной артерии блокаторы АТ1-рецепторов могут вызывать повышение уровня креатинина в плазме крови и острую почечную недостаточность.

Блокада АТ,-рецепторов оказывает умеренное натрийуретическое действие посредством прямого подавления реабсорбции натрия в проксимальном канальце, а также вследствие угнетения синтеза и высвобождения альдостерона. Снижение обусловленной альдостероном реабсорбции натрия в дистальном канальце способствует некоторому диуретическому эффекту.

Лосартан, единственный препарат из блокаторов АТ1-рецепторов, оказывает дозозависимое урикозурическое действие. Этот эффект не зависит от активности ренин-ангиотензиновой системы и употребления поваренной соли. Механизм его еще окончательно не ясен.

Нервная система

Блокаторы АТ, -рецепторов замедляют нейротрансмиссию, угнетая периферическую симпатическую активность посредством блокады пресинаптических адренергических рецепторов. При экспериментальном интрацеребральном введении препаратов происходит подавление центральных симпатических ответов на уровне паравентрикулярных ядер. В результате действия на ЦНС снижается высвобождение вазопрессина, уменьшается чувство жажды.

Показания к применению блокаторов АТ1-рецепторов и побочные эффекты

В настоящее время единственным показанием к применению блокаторов АТ1-рецепторов является АГ. Целесообразность их применения у пациентов с ГЛЖ, хронической сердечной недостаточностью, диабетической нефропатией уточняется в процессе клинических испытаний.

Отличительной особенностью нового класса антигипертензивных препаратов является хорошая, сравнимая с плацебо, переносимость. Побочные эффекты при их применении наблюдаются значительно реже, чем при использовании . В отличие от последних, применение антагонистов ангиотензина II не сопровождается накоплением брадикинина и появлением обусловленного этим кашля. Значительно реже наблюдается также ангионевротический отек.

Подобно ингибиторам АПФ, эти средства могут вызывать достаточно быстрое снижение АД при ренинзависимых формах АГ. У больных с двусторонним сужением почечных артерий почек возможно ухудшение функции почек. У пациентов с ХПН существует риск развития гиперкалиемии в связи с угнетением высвобождения альдостерона в процессе лечения.

Применение блокаторов АТ1-рецепторов в период беременности противопоказано, в связи с возможностью нарушений развития плода и его гибели.

Несмотря на вышеупомянутые нежелательные эффекты, блокаторы АТ1-рецепторов являются наиболее хорошо переносимой больными группой антигипертензивных препаратов с наименьшей частотой развития побочных реакций.

Антагонисты АТ1-рецепторов хорошо сочетаются практически со всеми группами антигипертензивных средств. Особенно эффективно их сочетание с .

Лосартан

Представляет собой первый непептидный блокатор АТ1-рецепторов, ставший прототипом этого класса антигипертензивных препаратов. Он является производным бензилимидазола, не имеет агонистической активности к АТ1-рецепторам, которые блокирует в 30 000 раз активнее,чем АТ2-рецепторы. Период полувыведения лосартана короткий - 1,5- 2,5 ч. При первом прохождении через печень лосартан подвергается метаболизму с образованием активного метаболита ЕРХ3174, который в 15- 30 раз активнее лосартана и имеет более длительный период полувыведения - от 6 до 9 ч. Основные биологические эффекты лосартана обусловлены этим метаболитом. Как и лосартан, он характеризуется высокой селективностью к АТ1-рецепторам и отсутствием агонистической активности.

Биодоступность лосартана при приеме внутрь составляет только 33%. Его выведение осуществляется с желчью (65%) и мочой (35%). Нарушение функции почек незначительно влияет на фармакокинетику препарата, тогда как при дисфункции печени клиренс обоих действующих агентов уменьшается, а концентрация их в крови повышается.

Некоторые авторы полагают, что повышение дозы препарата более 50 мг в сутки не дает дополнительного антигипертензивного эффекта, тогда как другие наблюдали более существенное снижение АД при повышении дозы до 100 мг/сут. Дальнейшее повышение дозы не приводит к повышению эффективности препарата.

Большие надежды связывали с применением лосартана у больных с хронической сердечной недостаточностью. Основанием послужили данные исследования ELITE (1997), в котором терапия лосартаном (50 мг/сут) в течение 48 нед способствовала снижению риска смерти на 46% у больных с хронической сердечной недостаточностью по сравнению с каптоприлом, назначавшимся по 50 мг 3 раза в сутки. Поскольку это исследование было проведено на сравнительно небольшом контингенте (722) больных, было предпринято более масштабное исследование ELITE II (1992), включившее 3152 пациента. Целью явилось изучение влияния лосартана на прогноз больных с хронической сердечной недостаточностью. Однако результаты этого исследования не подтвердили оптимистический прогноз - смертность больных на фоне лечения каптоприлом и лосартаном была практически одинаковой.

Ирбесартан

Ирбесартан представляет собой высокоспецифический блокатор АТ1-рецепторов. По химической структуре он относится к производным имидазола. Обладает высоким сродством к АТ1-рецепторам, в 10 раз превосходя по селективности лосартан.

При сравнении антигипертензивного эффекта ирбесартана в дозе 150- 300 мг/сут и лосартана в дозе 50- 100 мг/сут отмечено, что через 24 ч после приема ирбесартан более значительно снижал ДАД, чем лосартан. Через 4 нед терапии повышать дозу для достижения целевого уровня ДАД (<90 мм рт. ст.) потребовалось у 53% больных, получавших ирбесартан, и у 61% пациентов, получавших лосартан. Дополнительное назначение гидрохлоротиазида более значительно усилило антигипертензивный эффект ирбесартана, чем лосартана.

В многочисленных исследованиях установлено, что блокада активности ренин-ангиотензиновой системы оказывает защитное действие на почки у больных с АГ, диабетической нефропатией и протеинурией. В основе этого эффекта лежит инактивирующее действие препаратов на внутри почечное и системное действие ангиотензина II. Наряду с системным снижением АД, что само по себе оказывает защитное действие, нейтрализация эффектов ангиотензина II на органном уровне способствует снижению сопротивления эфферентных артериол. Это приводит к снижению внутриклубочкового давления с последующим уменьшением протеинурии. Можно ожидать, что ренопротекторный эффект блокаторов АТ1-рецепторов может оказаться более значимым, чем эффект ингибиторов АПФ. Блокаторы АТ1-рецепторов селективно действуют на уровне АТ1-рецептора, более полно блокируют ренин-ангиотензиновую систему в ткани почек, так как препятствуют эффектам ангиотензина II любого происхождения.

В нескольких исследованиях изучали ренопротекторное действие ирбесартана у больных с АГ и сахарным диабетом II типа с протеинурией. Препарат уменьшал протеинурию и замедлял процессы гломерулосклероза.

В настоящее время проводятся клинические исследования по изучению ренопротекторного действия ирбесартана у больных с диабетической нефропатией и АГ. В одном из них, IDNT, изучается сравнительная эффективность ирбесартана и амлодипина у больных с АГ на фоне диабетической нефропатии.

Телмисартан

Телмисартан оказывает ингибирующее действие на АТ1-рецепторы, в 6 раз превосходящее таковое лосартана. Является липофильным препаратом, благодаря чему хорошо проникает в ткани.

Сравнение антигипертензивной эффективности телмисартана с другими современными средствами показывает, что он не уступает ни одному из них.

Эффект телмисартана является дозозависимым. Повышение суточной дозы с 20 мг до 80 мг сопровождается двукратным усилением действия на САД, а также более существенным уменьшением ДАД. Повышение дозы более 80 мг в сутки не дает дополнительного снижения АД.

Валсартан

Стойкое снижение САД и ДАД наступает через 2-4 нед регулярного приема, как и других блокаторов АТ1-рецепторов. Усиление эффекта наблюдается через 8 нед. Суточное мониторирование АД свидетельствует, что валсартан не нарушает нормальный циркадный ритм, а показатель Т/Р составляет, по разным данным, 60-68%. Эффективность не зависит от пола, возраста и расы. Валсартан не уступает по антигипертензивной эффективности амлодипину, гидрохлоротиазиду и лизиноприлу, превосходя их по переносимости.

В исследовании VALUE, которое начато в 1999 г. и включает 14 400 больных с АГ из 31 страны, сравнительная оценка эффективности влияния валсартана и амлодипина на конечные точки позволит решить вопрос о наличии у них, как у сравнительно новых препаратов, преимуществ по влиянию на риск развития осложнений у больных с АГ по сравнению с диуретиками и .

Ангиотензин (АТ) - это гормон из рода олигопептидов, который отвечает за сужение сосудов и подъем АД в организме. Вещество является частью ренин-ангиотензиновой системы, регулирующей вазоконстрикцию. Кроме того, олигопептид активирует синтез альдостерона - гормона надпочечников. Альдостерон также способствует повышению давления. Прекурсором ангиотензина считается белок ангиотензиноген, вырабатываемый печенью.

Ангиотензин был выделен как самостоятельное вещество и синтезирован в 30-х годах прошлого столетия в Аргентине и Швейцарии.

Коротко об ангиотензиногене

Ангиотензиноген является ярким представителем класса глобулинов и имеет в своем составе более чем 450 аминокислот. Белок вырабатывается и высвобождается в кровь и лимфу постоянно. Его уровень в течение дня может меняться.

Повышение концентрации глобулина происходит под действием глюкокортикоидов, эстрогена и тиреодных гормонов. Этим объясняется стойкое повышение АД при использовании оральных контрацептивов на основе эстрогенов.

Если давление крови понижается, и содержание Na+ резко падает, происходит рост уровня ренина и скорость выработки ангиотензиногена значительно возрастает.

Количество этого вещества в плазме здорового человека составляет примерно один ммоль/л. При развитии гипертонии ангиотензиноген в крови повышается. При этом наблюдаются периоды рениновой активности, что выражается концентрацией ангиотензина 1 (АТ 1).

Под влиянием ренина, синтезируемого в почках, из ангиотензиногена образуется АТ 1. Элемент биологически неактивен, его единственное предназначение - быть прекурсором АТ 2, который формируется в процессе отщепления двух последних атомов с C-конца молекулы неактивного гормона.

Именно ангиотензин 2 является главным гормоном РААС (ренин-ангиотензин-альдостероновой системы). Он обладает выраженной сосудосуживающей активностью, задерживает в организме соль и воду, повышает ОПСС и АД.

Можно условно выделить два главных эффекта, которые ангиотензин II оказывает на больного:

  • Пролиферативный. Проявляется увеличением объёма и массы кардиомиоцитов, соединительной ткани организма, клеток артериол, что вызывает уменьшение свободного просвета. Происходит неконтролируемое разрастание внутренней слизистой оболочки почки, увеличение количества мезангиальных клеток.
  • Гемодинамический. Эффект проявляется в быстром повышении АД и системной вазоконстрикции. Сужение диаметра кровеносных сосудов происходит на уровне почечных артериол, в результате чего увеличивается давление крови в капиллярах.

Под воздействием ангиотензина II повышается уровень альдостерона, который задерживает в организме натрий и выводит калий, что провоцирует хроническую гипокалиемию. На фоне этого процесса снижается активность мышц, формируется стойкая гипертония.

Количество АТ 2 в плазме возрастает при следующих недомоганиях:

  • рак почки, выделяющий ренин;
  • нефротический синдром;
  • почечная гипертония.

Уровень активного ангиотензина может быть и снижен. Это происходит при развитии таких заболеваний:

  • острая почечная недостаточность;
  • синдром Кона.

К снижению концентрации гормона может привести удаление почки.

Ангиотензин III и IV

В конце 70-х прошлого столетия был синтезирован ангиотензин 3. Гормон образуется при дальнейшем расщеплении эффекторного пептида до 7 аминокислот.

Ангиотензин III обладает меньшим сосудосуживающим эффектом, чем АТ 2, но при этом более активен в отношении альдостерона. Поднимает среднее АД.

Под действием ферментов аминопептидазы АТ III расщепляется до 6 аминокислот и образует ангиотензин IV. Он менее активен, чем АТ III и участвует в процессе гемостаза.

Основная функция активного олигопептида заключается в поддержке постоянного объема крови в организме. Ангиотензин влияет на процесс посредством АТ-рецепторов. Они бывают разных видов: АТ1-, АТ2-, АТ3-, АТ4-рецепторы и другие. Эффекты ангиотензина зависят от его взаимодействия с этими белками.

Наиболее близки по своему строению АТ 2 и АТ1-рецепторы, поэтому активный гормон в первую очередь соединяется с АТ1-рецепторами. В результате этой связи поднимается АД.

Если при высокой активности АТ 2 свободных АТ1-рецепторов нет, олигопептид соединяется с АТ 2-рецепторами. к которым менее предрасположен. В итоге запускаются антагонистические процессы, и АД понижается.

Ангиотензин II может влиять на организм как за счет непосредственного действия на клетки артериол, так и косвенного - через центральную или симпатическую нервную систему, гипоталамус и надпочечники. Его воздействие распространяется на концевые артерии, капилляры и венулы по всему организму.

Сердечно-сосудистая система

АТ 2 оказывает направленное вазоконстрикторное действие. Кроме сосудосуживающего эффекта, ангиотензин ii меняет силу сокращения сердца. Работая через ЦНС, гормон сдвигает симпатическую и парасимпатическую активность.

Влияние АТ 2 на организм в целом и сердечно-сосудистую систему в частности может быть преходящим или длительным.

Кратковременный эффект выражается вазоконстрикцией и стимуляцией выработки альдостерона. Продолжительное воздействие определяется тканевым АТ2, образующимся в эндотелии сосудистых областей сердечной мышцы.

Активный пептид провоцирует увеличение объёма и массы миокарда и нарушает метаболизм. Кроме того, он поднимает сопротивление в артериях, что провоцирует растяжение сосудов.

В результате воздействие ангиотензина II на сердечно-сосудистую систему развивается гипертрофия левого желудочка миокарда и стенок артерий, внутриклубочковая гипертензия.

ЦНС и головной мозг

АТ 2 оказывает опосредственное влияние на нервную систему и головной мозг через гипофиз и гипоталамус. Олигопептид стимулирует выработку АКТГ в передней части гипофиза и активирует синтез вазопрессина гипоталамусом.

Адиуретин, в свою очередь, оказывает яркое антидиуретическое действие, которое порождает:

  • Задержку воды в организме, повышая обратное всасывание жидкости из полости почечных канальцев в кровь. Это способствует увеличению объема циркулирующей в организме крови и ее разжижению.
  • Усиливает сосудосуживающий эффект ангиотензина II и катехоламинов.

АКТГ стимулирует надпочечники и повышает выработку глюкокортикоидов, из которых самым биологически активным является кортизол. Гормон, хотя он и не обладает вазоконстрикторным воздействием, усиливает сосудосуживающее влияние катехоламинов, секретируемых надпочечниками.

При резком повышении синтеза вазопрессина и АКТГ у больных появляется чувство жажды. Этому способствует и высвобождение норадреналина при прямом воздействии на симпатическую НС.

Надпочечники

Под влиянием ангиотензина в надпочечниках активируется высвобождение адольстерона. В результате происходит:

  • задержка воды в организме;
  • увеличение количества циркулирующей крови;
  • рост частоты сокращений миокарда;
  • усиление сосудосуживающего действия АТ 2.

Все эти процессы суммарно приводят к повышению АД. Эффект от чрезмерного уровня альдостерона можно наблюдать в период лютеиновой фазы месячного цикла у женщин.

Почки

В нормальных условиях ангиотензин II на функцию почек практически не влияет. Патологический процесс разворачивается на фоне чрезмерной активности РААС. Резкое уменьшение кровотока в тканях почки приводит к ишемии канальцев, затрудняет фильтрацию.

Процесс реабсорбции, вызывающий уменьшения количества мочи и выведение из организма натрия, калия и свободной жидкости, нередко приводит к обезвоживанию и появлению протеинурии.

Для кратковременного влияния АТ 2 на почки характерно повышение внутриклубочкового давления. При продолжительном воздействии развивается гипертрофия мезангиума.

К чему приводит функциональная активность ангиотензина II

Кратковременное повышение уровня гормона не оказывает на организм выраженного отрицательного воздействия. Совсем по-другому отражается на человеке длительное увеличение АТ 2. Оно нередко порождает целый ряд патологических изменений:

  • Гипертрофию миокарда, кардиосклероз, сердечную недостаточность, инфаркт. Эти недуги возникают на фоне истощения сердечной мышцы, переходящей в миокардиодистрофию.
  • Утолщение стенок сосудов и уменьшение просвета. В результате усиливается артериальное сопротивление и поднимается АД.
  • Ухудшается кровоснабжение тканей организма, развивается кислородное голодание. В первую очередь от плохого кровообращения страдают мозг, миокард и почки. Постепенно формируется дистрофия этих органов, погибшие клетки замещаются фиброзной тканью, что еще больше усугубляет симптомы недостаточности кровообращения. Ухудшается память, появляются частые головные боли.
  • Развивается инсулинорезистентность (пониженная чувствительность) к инсулину, что провоцирует обострение сахарного диабета.

Продолжительная активность олигопептидного гормона приводит к стойкому повышению АД, которое поддается только медикаментозному воздействию.

Норма ангиотензина I и II

Для определения уровня эффекторного пептида проводится анализ крови, ничем не отличающийся от обычного исследования на гормоны.

У больных артериальной гипертонией исследование выявляет активность ренина в плазме. На анализ берется кровь из вены после восьмичасового ночного сна и бессолевой диеты в течение 3 суток.

Как видно, ангиотензин II играет огромную роль в регуляции АД в организме. Следует настороженно относиться к любым изменениям уровня АТ 2 в крови. Конечно, это не означает, что при небольшом излишке гормона АД сразу поднимется до 220 мм рт. ст., а ЧСС - до 180 сокращений в минуту. По своей сути, олигопептидный гормон не может непосредственно повышать давление и провоцировать развитие гипертонии, но, тем не менее, он всегда активно участвует в формировании болезни.

Ангиотензиноген

Ангиотензиноген - белок из класса глобулинов , состоит из 453 аминокислот . Он постоянно вырабатывается и высвобождается в кровь в основном печенью . Ангиотензиноген относится к серпинам , хотя в отличие от большинства серпинов он не ингибирует другие белки. Уровень ангиотензиногена повышается под действием плазменных кортикостероидов , эстрогена , тиреоидного гормона и ангиотензина II.

Ангиотензин I

Ангиотензин I образуется из ангиотезиногена под действием ренина . Ренин вырабатывается почками в ответ на снижение внутрипочечного давления на юкстагломерулярные клетки и сниженную доставку Na+ и Cl- к macula densa .

Ренин отщепляет декапептид (пептид из 10 аминокислот) от ангиотензиногена, гидролизуя пептидную связь между лейцином и валином , что приводит к высвобождению ангиотензина I. Ангиотензин I не обладает биологической активностью и является только предшественником активного ангиотензина II.

Ангиотензин II

Ангиотензин I преобразуется в ангиотензин II под действием ангиотензин-превращающего фермента (АПФ), который отщепляет две последние (то есть C-концевые) аминокислоты. Таким образом образуется активный октапептид (из 8 аминокислот) ангиотензин II. Ангиотензин II обладает сосудосуживающей активностью и увеличивает синтез альдостерона .

Система ангиотензина является основной мишенью для гипотензивных (снижающих давление) лекарств. АПФ является мишенью для многих ингибирующих лекарств, снижающих уровень ангиотензина II. Другой класс лекарств - антагонисты ангиотензин II AT1 рецепторов.

Дальнейшая деградация ангиотензина II может приводить к образованию еще меньших пептидов: ангиотензина III (7 аминокислот) и ангиотензина IV (6 аминокислот), которые обладают сниженными по сравнению с ангиотензином II активностями.

Функциональная активность ангиотензина II

Сердечно-сосудистая система

Ангиотензин - сильный вазоконстриктор прямого действия. Он сужает артерии и вены, что приводит к повышению давления. Сосудосуживающая активность ангиотензина II определяется его взаимодействием с AT1 рецептором . Лиганд -рецепторный комплекс активирует НАД-H-оксидазу, образующую супероксид , который в свою очередь взаимодействует с вазорелаксирующим фактором оксидом азота NO и инактивирует его. Кроме этого, он обладает протромботическим эффектом, регулируя адгезию и агрегацию тромбоцитов и синтез ингибиторов PAI-1 и PAI-2.

Нервная система

Ангиотензин вызывает чувство жажды. Он повышает секрецию антидиуретического гормона в нейросекреторных клетках гипоталамуса и секрецию АКТГ в передней доле гипофиза, а также потенциирует высвобождение норадреналина за счёт прямого действия на постганглионарные симпатические нервные волокна.

Надпочечники

Под действием ангиотензина кора надпочечников выделяет гормон альдостерон , вызывающий задержку натрия и потерю калия.

Почки

Ангиотензин обладает прямым эффектом на проксимальные канальцы, что увеличивает задержку натрия. В целом ангиотензин увеличивает скорость гломерулярной фильтрации за счёт сужения эфферентных почечных артериол и повышения давления в почках.

См. также

Ссылки

  • Brenner & Rector’s The Kidney, 7th ed., Saunders, 2004.
  • Mosby’s Medical Dictionary, 3rd Ed., CV Mosby Company, 1990.
  • Review of Medical Physiology, 20th Ed., William F. Ganong, McGraw-Hill, 2001.

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Ангиотензин" в других словарях:

    Ангиотензин … Орфографический словарь-справочник

    - (гипертензин ангиотонин), гормон (пептид), образующийся в крови животных и человека. В составе ренин ангиотензионной системы регулирует артериальное давление и водно солевой обмен организма, стимулирует секрецию альдостерона, простагландинов и др … Большой Энциклопедический словарь

    АНГИОТЕНЗИН, ПЕПТИД, содержащийся в крови, который способствует повышению кровяного давления, вызывая сужение узких кровеносных сосудов. см. также РЕНИН … Научно-технический энциклопедический словарь

    Ангиотонин, гипертензин, гормон млекопитающих. Повышает кровяное давление, вызывает сокращение матки и стимулирует секрецию ряда гормонов (альдостерона, вазопрессина и др.). По химич. природе октапептид. Биохимич. предшественник активного А. (т.… … Биологический энциклопедический словарь

    Сущ., кол во синонимов: 2 гипертензин (1) гормон (126) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    АНГИОТЕНЗИН - (angiolensin) один из двух псптидов: ангиотензин I (angiotensin I) или ангиотензин II (angiotensin II). Ангиотензин I вырабатывается в печени из белка (альфа глобулина) под действием образующегося в почках ренина, откуда попадает в кровь. Когда… … Толковый словарь по медицине