Как убрать квадратный корень. Как извлечь корень из многозначного числа

Глава первая.

Извлечение из данного целого числа наибольшего целого квадратного корня.

170. Предварительные замечания.

а) Так как мы будем говорить об извлечении только квадратного корня, то для сокращения речи в этой главе мы вместо „квадратный" корень будем говорить просто „корень".

б) Если возвысим в квадрат числа натурального ряда: 1,2,3,4,5 . . . , то получим такую таблицу квадратов: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100,121,144. .,

Очевидно, имеется очень многo целых чисел, которые в этой таблице не находятся; из таких чисел, конечно, нельзя извлечь целый корень. Поэтому, если требуется извлечь корень из какого-нибудь целого числа, напр. требуется найти √4082 , то мы условимся это требование понимать так: извлечь целый корень из 4082, если это возможно; если же нельзя, то мы должны найти наибольшее целое число, квадрат которого заключается в 4082 (такое число есть 63, так как 63 2 = 39б9, а 64 2 = 4090).

в) Если данное число меньше 100, то корень из него находится по таблице умножения; так, √60 будет 7, так как семью 7 равно 49, что меньше 60, а восемью 8 составляет 64, что больше 60.

171. Извлечение корня из числа, меньшего 10000, но большего 100. Пусть надо найти √4082 . Так как это число меньше 10 000, то корень из него меньше √l0 000 = 100. С другой стороны, данное число больше 100; значит, корень из него больше (или равен 10) . (Если бы, напр., требовалось найти √ 120 , то хотя число 120 > 100, однако √ 120 равен 10, т.к. 11 2 = 121.) Но всякое число, которое больше 10, но меньше 100, имеет 2 цифры; значит, искомый корень есть сумма:

десятки + единицы,

и поэтому квадрат его должен равняться сумме:

Сумма эта должна быть наибольшим квадратом, заключающимся в 4082.

Возьмем из них наибольший, 36, и допустим,что квадрат десятков корня будет равен именно этому наибольшему квадрату. Тогда число десятков в корне должно быть 6. Проверим теперь, что это всегда должно быть так, т. е. всегда число десятков корня равно наибольшему целому корню из числа сотен подкоренного числа.

Действительно, в нашем примере число десятков корня не может быть больше 6, так как (7 дес.) 2 = 49 сотен, что превосходит 4082. Но оно не может быть и меньше 6, так как 5 дес. (с единицами) меньше 6 дес, а между тем (6 дес.) 2 = 36 сотен, что меньше 4082. А так как мы ищем наибольший целый корень, то мы не должны брать для корня 5 дес, когда и 6 десятков оказывается не много.

Итак, мы нашли число десятков корня, именно 6. Пишем эту цифру направо от знака =, запомнив, что она означает десятки корня. Возвысив ее в квадрат, получим 36 сотен. Вычитаем эти 36 сотен из 40 сотен подкоренного числа и сносим две остальные цифры данного числа. В остатке 482 должны содержаться 2 (6 дес.) (ед.) + (ед.)2. Произведение (6 дес.) (ед.) должно составлять десятки; поэтому удвоенное произведение десятков на единицы надо искать в десятках остатка, т. е. в 48 (мы получим число их, отделив в остатке 48"2 одну цифру справа). Удвоенные десятки корня составляют 12. Значит, если 12 умножим на единицы корня (которые пока неизвестны), то мы должны получить число, содержащееся в 48. Поэтому мы разделим 48 на 12.

Для этого налево от остатка проводим вертикальную черту и за нею (отступив от черты на одно место влево для цели, которая сейчас обнаружится) напишем удвоенную первую цифру корня, т. е. 12, и на нее разделим 48. В частном получим 4.

Однако, заранее нельзя ручаться, что цифру 4 можно принять за единицы корня, так как мы сейчас разделили на 12 все число десятков остатка, тогда как некоторая часть из них может и не принадлежать удвоенному произведению десятков на единицы, а входит в состав квадрата единиц. Поэтому цифра 4 может оказаться велика. Надо ее испытать . Она, очевидно, годится в том случае, если сумма 2 (6 дес.) 4 + 4 2 окажется не больше остатка 482.

В результате получаем сразу сумму того и другого. Полученное произведение оказалось 496, что больше остатка 482; значит, цифра 4 велика. Тогда испытаем таким же образом следующую меньшую цифру 3.

Примеры.

В примере 4-м при делении 47 десятков остатка на 4, мы получаем в частном 11. Но так как цифра единиц корня не может быть двузначным числом 11 или 10, то надо прямо испытать цифру 9.

В примере 5-м после вычитания из первой грани квадрата 8 остаток оказывается 0, и следующая грань тоже состоит из нулей. Это показывает, что искомый корень состоит только из 8 десятков, и потому на место единиц надо поставить нуль.

172. Извлечение корня из числа, большего 10000 . Пусть требуется найти √35782 . Так как подкоренное число превосходит 10 000, то корень из него больше √10000 = 100 и, следовательно, он состоит из 3 цифр или более. Из скольких бы цифр он ни состоял, мы можем его всегда рассматривать как сумму только десятков и единиц. Если, напр., корень оказался бы 482, то мы можем его считать за сумму 48 дес. + 2 ед. Тогда квадрат корня будет состоять из 3 слагаемых:

(дес.) 2 + 2 (дес.) (ед.) + (ед.) 2 .

Теперь мы можем рассуждать совершенно так же, как и при нахождении √4082 (в предыдущем параграфе). Разница будет только та, что для нахождения десятков корня из 4082 мы должны были извлечь корень из 40, и это можно было сделать по таблице умножения; теперь же для получения десятков√35782 нам придется извлечь корень из 357, что по таблице умножения нельзя выполнить. Но мы можем найти√357 тем приемом, который был описан в предыдущем параграфе, так как число 357 < 10 000. Наибольший целый корень из 357 оказывается 18. Значит, в √3"57"82 должно быть 18 десятков. Чтобы найти единицы, надо из 3"57"82 вычесть квадрат 18 десятков, для чего достаточно вычесть квадрат 18 из 357 сотен и к остатку снести 2 последние цифры подкоренного числа. Остаток от вычитания квадpaта 18 из 357 у нас уже есть: это 33. Значит, для получения остатка от вычитания квадрата 18 дес. из 3"57"82, достаточно к 33 приписать справа цифры 82.

Далее поступаем так, как мы поступали при нахождении √4082 , a именно: налево от остатка 3382 проводим вертикальную черту и за нею пишем (отступив от черты на одно место) удвоенное число найденных десятков корня, т. е. 36 (дважды 18). В остатке отделяем одну цифру справа и делим число десятков остатка, т. е. 338, на 36. В частном получаем 9. Эту цифру испытываем, для чего ее приписываем к 36 справа и на нее же умножаем. Произведение оказалось 3321, что меньше остатка. Значит, цифра 9 годится, пишем ее в корне.

Вообще, чтобы извлечь квадратный корень из какого угодно целого числа, надо сначала извлечь корень из числа его сотен; если это число более 100, то придется искать корень из числа сотен этих сотен, т. е. из десятков тысяч данного числа; если и это число более 100, придется извлекать корень из числа сотен десятков тысяч, т. е. из миллионов данного числа, и т. д.

Примеры.

В последнем примере, найдя первую цифру и вычтя квадрат ее, получаем в остатке 0. Сносим следующие 2 цифры 51. Отделив десятки, мы получаем 5 дес, тогда как удвоенная найденная цифра корня есть 6. Значит, от деления 5 на 6 мы получаем 0. Ставим в корне 0 на втором месте и к остатку сносим следующие 2 цифры; получаем 5110. Далее продолжаем как обыкновенно.

В этом примере искомый корень состоит только из 9 сотен, и потому на месте десятков и на месте единиц надо поставить нули.

Правило. Чтобы, извлечь квадратный корень из данною целого числа, разбивают его, от правой руки к левой, на грани, по 2 цифры в каждой, кроме последней, в которой может быть и одна цифра.
Чтобы найти первую цифру корня, извлекают квадратный корень из первой грани.
Чтобы найти вторую цифру, из первой грани вычитают квадрат первой цифры корня, к остатку сносят вторую грань и число десятков получившегося числа делят на удвоенную первую цифру корня; полученное целое число подвергают испытанию.
Испытание это производится так: за вертикальной чертой (налево от остатка) пишут удвоенное ранее найденное число корня и к нему, с правой стороны, приписывают испытуемую цифру, получившееся, после этой приписки число умножают на испытуемую цифру. Если после умножения получится число, большее остатка, то испытуемая цифра не годится и надо испытать следующую меньшую цифру.
Следующие, цифры корня находятся по тому же приему.

Если после снесения грани число десятков получившегося числа окажется меньше делителя, т. е. меньше удвоенной найденной части корня, то в корне ставят 0, сносят следующую грань и продолжают действие дальше.

173. Число цифр корня. Из рассмотрения процесса нахождения корня следует, что в корне столько цифр, сколько в подкоренном числе заключается граней по 2 цифры каждая (в левой грани может быть и одна цифра).

Глава вторая.

Извлечение приближенных квадратных корней из целых и дробных чисел .

Извлечение квадратного корня из многочленов см. в дополнениях ко 2-й части § 399 и след.

174. Признаки точного квадратного корня. Точным квадратным корнем из данного числа называется такое число, квадрат которого в точности равняется данному числу. Укажем некоторые признаки, по которым можно судить, извлекается ли из данного числа точный корень, или нет:

а) Если из данного целого числа не извлекается точный целый корень (получается при извлечении остаток), то из такого числа нельзя найти и дробный точный корень, так как всякая дробь, не равная целому числу, будучи умножена сама на себя, дает в произведении тоже дробь, а не целое число.

б) Так как корень из дроби равен корню из числителя, деленному на корень из знаменателя, то точный корень из несократимой дроби не может быть найден в том случае, если его нельзя извлечь из числителя или из знаменателя. Напр, из дробей 4 / 5 , 8 / 9 и 11 / 15 нельзя извлечь точный корень, так как в первой дроби нельзя его извлечь из знаменателя, во второй - из числителя и в третьей - ни из числителя, ни из знаменателя.

Из таких чисел, из которых нельзя извлечь точный корень, можно извлекать лишь приближенные корни.

175. Приближенный корень с точностью до 1 . Приближенным квадратным корнем с точностью до 1 из данного числа (целого или дробного - все равно) называется такое целое число, которое удовлетворяет следующим двум требованиям:

1) квадрат этого числа не больше данного числа; 2) но квадрат этого числа увеличенного на 1, больше данного числа. Другими словами, приближенным квадратным корнем с точностью до 1 называется наибольший целый квадратный корень из данного числа, т. е.тот корень, который мы научились находить в предыдущей главе. Корень этот называется приближенным с точностью до 1, потому что для получения точного корня к этому приближенному корню надо было бы добавить еще некоторую дробь, меньшую 1, так что если вместо неизвестного точного корня мы возьмем этот приближенный, то сделаем ошибку, меньшую 1.

Правило. Чтобы извлечь приближенный квадратный корень с точностью до 1, надо извлечь наибольший целый корень из целой части данного числа.

Найденное по этому правилу число есть приближенный корень с недостатком , так как в нем недостает до точного корня некоторой дроби (меньшей 1). Если этот корень увеличим на 1, то получим другое число, в котором есть некоторый избыток над точным корнем, и избыток этот меньше 1. Этот увеличенный на 1 корень можно назвать тоже приближенным корнем с точностью до 1, но с избытком. (Названия: „с недостатком" или „с избытком" в некоторых математических книгах заменены другими равносильными: „по недостатку" или „по избытку".)

176. Приближенный корень с точностью до 1 / 10 . Пусть требуется найти √2,35104 с точностью до 1 / 10 . Это значит, что требуется найти такую десятичную дробь, которая состояла бы из целых единиц и десятых долей и которая удовлетворяла бы двум следующим требованиям:

1) квадрат этой дроби не превосходит 2,35104, но 2) если увеличим ее на 1 / 10 , то квадрат этой увеличенной дроби превосходит 2,35104.

Чтобы найти такую дробь, мы сначала нaйдем приближенный корень с точностью до 1, т. е. извлечем корень только из целого числа 2. Получим 1 (и в остатке 1). Пишем в корне цифру1 и ставим после нее запятую. Теперь будем искать цифру десятых. Для этого сносим к остатку 1 цифры 35, стоящие направо от запятой, и продолжаем извлечениетак, как будто мы извлекали корень из целого числа 235. Полученную цифру 5 пишем в корне на месте десятых. Остальные цифры подкоренного числа (104) нам не нужны. Что полученное число 1,5 будет действительно приближенный корень с точностью до 1 / 10 видно из следующего. Если бы мы находили наибольший целый корень из 235 с точностью до 1, то получили бы 15. Значит:

15 2 < 235, но 16 2 >235.

Разделив все эти числа на 100, получим:

Значит, число 1,5 есть та десятичная дробь, которую мы назвали приближенным корнем с точностью до 1 / 10 .

Найдем еще этим приемом следующие приближенные корни с точностью до 0,1:

177. Приближенный квадратный корень с точностью до 1 / 100 до 1 / 1000 и т. д.

Пусть требуется найти с точностью до 1 / 100 приближенный √248 . Это значит: найти такую десятичную дробь, которая состояла бы из целых, десятых и сотых долей и которая удовлетворяла бы двум требованиям:

1) квадрат ее не превосходит 248, но 2) если увеличим эту дробь на 1 / 100 то квадрат этой увеличенной дроби превосходит 248.

Такую дробь мы найдем в такой последовательности: сначала отыщем целое число, потом цифру десятых, затем и цифру сотых. Корень из целого числа будет 15 целых. Чтобы получить цифру десятых, надо как мы видели, снести к остатку 23 еще 2 цифры, стоящие направо от запятой. В нашем примере этих цифр нет вовсе, ставим на их место нули. Приписав их к остатку и продолжая действие так, как будто находим корень из целого числа 24 800, мы найдем цифру десятых 7. Остается найти цифру сотых. Для этого приписываем к остатку 151 еще 2 нуля и продолжаем извлечение, как будто мы находим корень из целого числа 2 480 000. Получаем 15,74. Что это число действительно есть приближенный корень из 248 с точностью до 1 / 100 видно из следующего. Если бы мы находили наибольший целый квадратный корень из целого числа 2 480 000, то получили бы 1574; значит:

1574 2 < 2 480 000, но 1575 2 > 2 480 000.

Разделив все числа на 10 000 (= 100 2), получим:

Значит, 15,74 есть та десятичная дробь, которую мы назвали приближенным корнем с точностью до 1 / 100 из 248.

Применяя этот прием к нахождению приближенного корня с точностью до 1 / 1000 до 1 / 10000 и т. д. найдем следующее.

Правило. Чтобы извлечь из данного целою числа или из данной десятичной дроби приближенный корень с точностью до 1 / 10 до 1 / 100 до 1 / 100 и т. д., находят сначала приближенный корень с точностью до 1, извлекая корень из целого числа (если его нет, пишут о корне 0 целых).

Потом находят цифру десятых. Для этого к остатку сносят,2 цифры подкоренного числа, стоящие направо от запятой (если их нет, приписывают к остатку два нуля), и продолжают извлечение так, как это делается при извлечении корня из целого числа. Полученную цифру пишут в корне на месте десятых.

Затем находят цифру сотых. Для этого к остатку сносят снова две цифры, стоящие направо от тех, которые были только что снесены, и т. д.

Таким образом, при извлечении корня из целого числа с десятичной дробью, надо делить на грани по 2 цифры в каждой, начиная от запятой, как влево (в целой части числа), так и вправо, (в дробной части).

Примеры.

1) Найти до 1 / 100 корни: а) √2 ; б) √0,3 ;

В последнем примере мы обратили дробь 3 / 7 в десятичную, вычислив 8 десятичных знаков, чтобы образовались 4 грани, потребные для нахождения 4 десятичных знаков корня.

178. Описание таблицы квадратных корней. В конце этой книги приложена таблица квадратных корней, вычисленных с четырьмя цифрами. По этой таблице можно быстро находить квадратный корень из целого числа (или десятичной дроби), которое выражено не более, чем четырьмя цифрами. Прежде чем объяснить, как эта таблица устроена, заметим, что первую значащую цифру искомого корня мы всегда можем найти без помощи таблиц по одному взгляду на подкоренное число; мы легко также определим, какой десятичный разряд означает первая цифра корня и, следовательно, где в корне, когда найдем его цифры, надо поставить запятую. Приведем несколько примеров:

1) √5"27,3 . Первая цифра будет 2, так как левая грань подкоренного числа есть 5; а корень из 5 равен 2. Кроме того, так как в целой части подкоренного числа всех граней только 2, то в целой части искомого корня должно быть 2 цифры и, следовательно, первая его цифра 2 должна означать десятки.

2) √9,041 . Очевидно, в этом корне первая цифра будет 3 простые единицы .

3) √0,00"83"4 . Первая значащая цифра есть 9, так как грань, из которой пришлось бы извлекать корень для получения первой значащей цифры, есть 83, а корень из 83 равен 9. Так как в искомом числе не будет ни целых, ни десятых, то первая цифра 9 должна означать сотые.

4) √0,73"85 . Первая значащая цифра есть 8 десятых .

5) √0,00"00"35"7 . Первая значащая цифра будет 5 тысячных .

Сделаем еще одно замечание. Положим, что требуется извлечь корень из такого числа, которое, после отбрасывания в нем занятой, изображается рядом таких цифр: 5681. Корень этот может быть один из слелуюших:

Если возьмем корни, подчеркнутые нами одной чертою, то все они будут выражены одним и тем же рядом цифр, именно теми цифрами, которые получаются при извлечении корня из 5681 (это будут цифры 7, 5, 3, 7). Причина этому та, что грани, на которые приходится разбивать подкоренное число при нахождении цифр корня, будут во всех этих примерах одни и те же, поэтому и цифры для каждого корня окажутся одинаковые (только положение запятой будет, конечно, различное). Точно так же во всех корнях, подчеркнутых нами двумя чертами, должны получиться одинаковые цифры, именно те, которыми выражается √568,1 (эти цифры будут 2, 3, 8, 3), и по той же причине. Таким образом, цифры корней из чисел, изображаемых (по отбрасывании запятой) одним и тем же рядом цифр 5681, будут двоякого (и только двоякого) рода: либо это ряд 7, 5, 3, 7, либо ряд 2, 3, 8, 3. То же самое, очевидно, может быть сказано о всяком другом ряде цифр. Поэтому, как мы сейчас увидим, в таблице каждому ряду цифр подкоренного числа соответствуют 2 ряда цифр для корней.

Теперь мы можем объяснить устройство таблицы и способ ее пользования. Для ясности объяснения мы изобразили здесь начало первой страницы таблицы.

Таблица эта расположена на нескольких страницах. На каждой из них в первой слева колонке помещены числа 10, 11, 12... (до 99). Эти числа выражают первые 2 цифры числа, из которого ищется квадратный корень. В верхней горизонтальной строчке (а также и в нижней) размещены числа: 0, 1, 2, 3... 9, представляющие собою 3-ю цифру данного числа, а затем далее направо помещены цифры 1, 2, 3 . . . 9, представляющие собою4-ю цифру данного числа. Во всех других горизонтальных строчках помещены по 2 четырехзначных числа, выражающие квадратные корни из соответствующих чисел.

Пусть требуется найти квадратный корень из какого-нибудь числа, целого или выраженного десятичною дробью. Прежде всего находим без помощи таблиц первую цифру корня и ее разряд. Затем отбросим в данном числе запятую, если она есть. Положим сначала, что после отбрасывания запятой останутся только 3 цифры, напр. 114. Находим в таблицах в левой крайней колонке первые 2 цифры, т. е. 11, и продвигаемся от них направо по горизонтальной строке до тех пор, пока не дойдем до вертикальной колонки, наверху (и внизу) которой стоит 3-я цифра числа, т. е. 4. В этом месте мы находим два четырехзначных числа: 1068 и 3376. Которое из этих двух чисел надо взять и где поставить в нем запятую, это определяется первою цифрою корня и ее разрядом, которые мы нашли раньше. Так, если надо найти √0,11"4 , то первая цифра корня есть 3 десятых, и потому мы должны взять для корня 0,3376. Если бы требовалось найти √1,14 , то первая цифра корня была бы 1, и мы взяли бы тогда 1,068.

Таким образом мы легко найдем:

√5,30 = 2,302; √7"18 = 26,80; √0,91"6 = 0,9571 и т.п.

Положим теперь, что требуется найти корень из числа, выраженного (по отбрасывании запятой) 4 цифрами, напр.√7"45,6 . Заметив, что первая цифра корня есть 2 десятка, находим для числа 745 так, как сейчас было объяснено, цифры 2729 (это число только замечаем пальцем, но его не записываем). Потом продвигаемся от этого числа еще направо до тех пор, пока в правой части таблицы (за последнею жирною чертою) не встретим ту вертикальную колонку, которая отмечена наверху (и внизу) 4-й цифрой данного числа, т. е. цифрой 6, и находим там число 1. Это будет поправка, которую надо приложить (в уме) к ранее найденному числу 2729; получим 2730. Это число записываем и ставим в нем запятую на надлежащем месте: 27,30.

Таким путем найдем, напр:

√44,37 = 6,661; √4,437 = 2,107; √0,04"437 =0,2107 и т.д.

Если подкоренное число выражается только одной или двумя цифрами, то мы можем предположить, что после этих цифр стоит один или два нуля, и затем поступать так, как было объяснено для трехзначного числа. Напр.√2,7 =√2,70 =1,643; √0,13 = √0,13"0 = 0,3606 и т.п..

Наконец, если подкоренное число выражено более, чем 4 цифрами, то из них мы возьмем только первые 4, а остальные отбросим, причем для уменьшения ошибки, если первая из отбрасцваемых цифр есть 5 или более 5, то мы увеличим на l четвертую из удержанных цифр. Так:

√357,8| 3 | = 18,91; √0,49"35|7 | = 0,7025; и т.п.

Замечание. В таблицах указан приближенный квадратный корень иногда с недостатком, иногда же с избытком, а именно тот из этих приближенных корней, который ближе подходит к точному корню.

179. Извлечение квадратных корней из обыкновенных дробей. Точный квадратный корень из несократимой дроби можно извлечь лишь тогда, когда оба члена дроби точные квадраты . В этом случае достаточно извлечь корень из числителя и знаменателя отдельно, напр.:

Приближенный квадратный корень из обыкновенной дроби c какою-нибудь десятичною точностью проще всего можно находить, если предварительно обратим обыкновенную дробь в десятичную, вычислив в этой дроби такое число десятичных знаков после запятой, которое было бы вдвое больше числа десятичных знаков в искомом корне.

Впрочем можно поступать и иначе. Объясним это на следующем примере:

Найти приближенный √ 5 / 24

Сделаем знаменатель точным квадратом. Для этого достаточно было бы умножить оба члена дроби на знаменатель 24; но в этом примере можно поступить иначе. Разложим 24 на простые множители: 24 = 2 2 2 3. Из этого разложения видно, что если 24 умножить на 2 и еще на 3, то тогда в произведении каждый простой множитель будет повторяться четное число раз, и, следовательно, знаменатель сделается квадратом:

Остается вычислить √30 с какой-нибудь точностью и результат разделить на 12. При этом надо иметь в виду, что от деления на 12 уменьшится и дробь, показывающая степень точности. Так, если найдем √30 с точностью до 1 / 10 и результат разделим на 12, то получим приближенный корень из дроби 5 / 24 с точностью до 1 / 120 (а именно 54 / 120 и 55 / 120)

Глава третья.

График функции х = √ y .

180. Обратная функция. Пусть дано какое-нибудь уравнение, определяющее у как функцию от х , напр, такое: у = х 2 . Мы можем сказать, что оно определяет не только у как функцию от х , но и, обратно, определяет х как функцию от у , хотя и неявным образом. Чтобы сделать эту функцию явной, надо решить данное уравнение относительно х , принимая у за известное число; так, из взятого нами уравнения находим: у = х 2 .

Алгебраическое выражение, полученное для x после решения уравнения, определяющего у как функцию от x, называется функцией, обратной той, которая определяет у.

Значит, функция, х = √ y обратна функции у = х 2 . Если, как это принято, независимое переменное обозначим х , а зависимое у , то полученную сейчас обратную функцию можем выразить так: y = √ x . Таким образом, чтобы получить функцию, обратную данной (прямой), надо из уравнения, определяющего эту данную функцию, вывести х в зависимости от y и в полученном выражении заменить y на x , а х на y .

181. График функции y = √ x . Функция эта невозможна при отрицательном значении х , но ее возможно вычислить (с любою точностью) при всяком положительном значении x , причем для каждого такого значения функция получает два различных значения с одинаковой абсолютной величиной, но с противоположными знаками. Если знаком будем обозначать только арифметическое значение квадратного корня, то эти два значения функции можем выразить так: y = ± √ x Для построения графика этой функции надо предварительно составить таблицу ее значений. Всего проще эту таблицу составить из таблицы значений прямой функции:

у = х 2 .

x

y

если значения у примем за значения х , и наоборот:

y = ± √ x

Нанеся все эти значения на чертеже, получим следующий график.

На том же чертеже мы изобразили (прерывистой линией) и график прямой функции у = х 2 . Сравним эти два графика между собою.

182. Соотношение между графиками прямой и обратной функций. Для составления таблицы значений обратной функции y = ± √ x мы брали для х те числа, которые в таблице прямой функции у = х 2 служили значениями для у , а для у брали те числа; которые в этой таблице были значениями для x . Из этого следует, что оба графика одинаковы, только график прямой функции так расположен относительно оси у - ов, как график обратной функции расположен относительно оси х - ов. Вследствие этого, если мы перегнем чертеж вокруг прямой ОА , делящей пополам прямой угол xОу , так, чтобы часть чертежа, содержащая полуось Оу , упала на ту часть, которая содержит полуось Ох , то Оу совместится с Ох , все деления Оу совпадут c делениями Ох , и точки параболы у = х 2 совместятся с соответствующими точками графика y = ± √ x . Напр, точки М и N , у которых ордината 4 , а абсциссы 2 и -2 , совпадут с точками М" и N" , у которых абсцисса 4 , а ординаты 2 и -2 . Если же эти точки совпадут, то это значит, что прямые ММ" и NN" перпендикулярны к ОА и делятся этою прямою пополам. То же самое можно сказать о всех других соответствующих точках обоих графиков.

Таким образом, график обратной функции должен быть такой же, как и грaфик прямой функции, но расположены эти графики различно, а именно симметрично друг с другом относительно биссектрисы угла хОу . Можно сказать, что график обратной функции есть отображение (как в зеркале) графика прямой функции относительно биссектрисы угла хОу .

Вы хотите хорошо сдать ЕГЭ по математике? Тогда вам необходимо уметь считать быстро, правильно и без калькулятора. Ведь главная причина потери баллов на ЕГЭ по математике – вычислительные ошибки.

По правилам проведения ЕГЭ, пользоваться калькулятором на экзамене по математике запрещается. Цена может быть слишком высокой - удаление с экзамена.

На самом деле калькулятор на ЕГЭ по математике не нужен. Все задачи решаются без него. Главное – внимание, аккуратность и некоторые секретные приемы, о которых мы расскажем.

Начнем с главного правила. Если какое-то вычисление можно упростить – упростите его.

Вот, например, такое «дьявольское уравнение»:

Семьдесят процентов выпускников решают его «в лоб». Считают дискриминант по формуле , после чего говорят, что корень невозможно извлечь без калькулятора. Но ведь можно разделить левую и правую части уравнения на . Получится

Какой способ проще? :-)

Многие школьники не любят умножение в «столбик». Никому не нравилось в четвертом классе решать скучные «примеры». Однако перемножить числа во многих случаях можно и без «столбика», в строчку. Это намного быстрее.

Обратите внимание, что мы начинаем не с меньших разрядов, а с бoльших. Это удобно.

Теперь – деление. Нелегко «в столбик» разделить на . Но вспомним, что знак деления: и дробная черта – одно и то же. Запишем в виде дроби и сократим дробь:

Другой пример.

Как быстро и без всяких столбиков возвести в квадрат двузначное число? Применяем формулы сокращенного умножения:

Иногда удобно использовать и другую формулу:

Числа, оканчивающиеся на , в квадрат возводятся моментально.

Допустим, надо найти квадрат числа ( - не обязательно цифра, любое натуральное число). Умножаем на и к результату приписываем . Всё!

Например: ( и приписали ).

( и приписали ).

( и приписали ).

Этот способ полезен не только для возведения в квадрат, но для извлечения квадратного корня из чисел, оканчивающихся на .

А как вообще извлечь квадратный корень без калькулятора? Покажем два способа.

Первый способ – разложение подкоренного выражения на множители.

Например, найдем
Число делится на (так как сумма его цифр делится на ). Разложим на множители:

Найдем . Это число делится на . На оно тоже делится. Раскладываем на множители.

Еще пример.

Есть и второй способ. Он удобен, если число, из которого надо извлечь корень, никак не получается разложить на множители.

Например, надо найти . Число под корнем – нечетное, оно не делится на , не делится на , не делится на ... Можно и дальше искать, на что же оно все-таки делится, а можно поступить проще – найти этот корень подбором.

Очевидно, что в квадрат возводили двузначное число, которое находится между числами и , поскольку , , а число находится между ними. Первую цифру в ответе мы уже знаем, это .

Последняя цифра в числе равна . Поскольку , , последняя цифра в ответе – либо , либо . Проверим:
. Получилось!

Найдем .

Значит, первая цифра в ответе – пятерка.

В числе последняя цифра – девятка. , . Значит, последняя цифра в ответе – либо , либо .

Проверим:

Если число, из которого надо извлечь квадратный корень, заканчивается на или – значит, квадратный корень из него будет числом иррациональным. Потому что ни один квадрат целого числа не заканчивается на или . Помните, что в задачах части вариантов ЕГЭ по математике ответ должен быть записан в виде целого числа или конечной десятичной дроби, то есть должен являться рациональным числом.

Квадратные уравнения встречаются нам в задачах , и вариантов ЕГЭ, а также в части . В них нужно считать дискриминант, а затем извлекать из него корень. И совсем не обязательно искать корни из пятизначных чисел. Во многих случаях дискриминант удается разложить на множители.

Например, в уравнении

Еще одна ситуация, в которой выражение под корнем можно разложить на множители, взята из задачи .

Гипотенуза прямоугольного треугольника равна , один из катетов равен , найти второй катет.

По теореме Пифагора, он равен . Можно долго считать в столбик, но проще применить формулу сокращенного умножения.

А теперь расскажем самое интересное - из-за чего все-таки выпускники теряют на ЕГЭ драгоценные баллы. Ведь ошибки в вычислениях возникают не просто так.

1 . Верный путь к потере баллов - неаккуратные вычисления, в которых что-то исправлено, зачеркнуто, одна цифра написана поверх другой. Посмотрите на свои черновики. Возможно, они выглядят так же? :-)

Пишите разборчиво! Не экономьте бумагу. Если что-то неправильно – не исправляйте одну цифру на другую, лучше напишите заново.

2 . Почему-то многие школьники, считая в столбик, стараются сделать это 1) очень-очень быстро, 2) очень мелкими цифрами, в уголке тетради и 3) карандашом. В результате получается вот что:

Разобрать что-либо невозможно. Что ж тогда удивляться, что оценка за ЕГЭ ниже, чем ожидали?

3 . Многие школьники привыкли игнорировать скобки в выражениях. Иногда встречается и такое:

Помните, что знак равенства ставится не где попало, а только между равными величинами. Пишите грамотно, даже на черновике.

4 . Огромное количество вычислительных ошибок связано с дробями. Если вы делите дробь на дробь – пользуйтесь тем, что
Здесь нарисован «гамбургер», то есть многоэтажная дробь. Крайне сложно при таком способе получить правильный ответ.

Подведем итоги.

Проверка заданий первой части профильного ЕГЭ по математике - автоматическая. Здесь не бывает «почти правильного» ответа. Либо он правилен, либо нет. Одна вычислительная ошибка – и привет, задача не засчитывается. Поэтому в ваших интересах научиться считать быстро, правильно и без калькулятора.

Задания второй части профильного ЕГЭ по математике проверяет эксперт. Позаботьтесь о нем! Пусть ему будет понятен и ваш почерк, и логика решения.

Математика зародилась тогда, когда человек осознал себя и стал позиционироваться как автономная единица мира. Желание измерить, сравнить, посчитать то, что тебя окружает, - вот что лежало в основе одной из фундаментальных наук наших дней. Сначала это были частички элементарной математики, что позволили связать числа с их физическими выражениями, позже выводы стали излагаться лишь теоретически (в силу своей абстрактности), ну а через некоторое время, как выразился один ученый, "математика достигла потолка сложности, когда из нее исчезли все числа". Понятие "квадратный корень" появилось еще в то время, когда его можно было без проблем подкрепить эмпирическими данными, выходя за плоскость вычислений.

С чего все начиналось

Первое упоминание корня, который на данный момент обозначается как √, было зафиксировано в трудах вавилонских математиков, положивших начало современной арифметике. Конечно, на нынешнюю форму они походили мало - ученые тех лет сначала пользовались громоздкими табличками. Но во втором тысячелетии до н. э. ими была выведена приближенная формула вычислений, которая показывала, как извлечь квадратный корень. На фото ниже изображен камень, на котором вавилонские ученые высекли процесс вывода √2 , причем он оказался настолько верным, что расхождение в ответе нашли лишь в десятом знаке после запятой.

Помимо этого, корень применялся, если нужно было найти сторону треугольника, при условии, что две другие известны. Ну и при решении квадратных уравнений от извлечения корня никуда не деться.

Наравне с вавилонскими работами объект статьи изучался и в китайской работе "Математика в девяти книгах", а древние греки пришли к выводу, что любое число, из которого не извлекается корень без остатка, дает иррациональный результат.

Происхождение данного термина связывают с арабским представлением числа: древние ученые полагали, что квадрат произвольного числа произрастает из корня, подобно растению. На латыни это слово звучит как radix (можно проследить закономерность - все, что имеет под собой "корневую" смысловую нагрузку, созвучно, будь то редис или радикулит).

Ученые последующих поколений подхватили эту мысль, обозначая его как Rx. Например, в XV веке, дабы указать, что извлекается корень квадратный из произвольного числа a, писали R 2 a. Привычная современному взгляду "галочка" √ появилась лишь в XVII веке благодаря Рене Декарту.

Наши дни

С точки зрения математики, квадратный корень из числа y - это такое число z, квадрат которого равен y. Иными словами, z 2 =y равносильно √y=z. Однако данное определение актуально лишь для арифметического корня, так как оно подразумевает неотрицательное значение выражения. Иными словами, √y=z, где z больше либо равно 0.

В общем случае, что действует для определения алгебраического корня, значение выражения может быть как положительным, так и отрицательным. Таким образом, в силу того, что z 2 =y и (-z) 2 =y, имеем: √y=±z или √y=|z|.

Благодаря тому, что любовь к математике с развитием науки лишь возросла, существуют разнообразные проявления привязанности к ней, не выраженные в сухих вычислениях. Например, наравне с такими занятными явлениями, как день числа Пи, отмечаются и праздники корня квадратного. Отмечаются они девять раз в сто лет, и определяются по следующему принципу: числа, которые обозначают по порядку день и месяц, должна быть корнем квадратным из года. Так, в следующий раз предстоит отмечать сей праздник 4 апреля 2016 года.

Свойства квадратного корня на поле R

Практически все математические выражения имеют под собой геометрическую основу, не миновала эта участь и √y, который определяется как сторона квадрата с площадью y.

Как найти корень числа?

Алгоритмов вычисления существует несколько. Наиболее простым, но при этом достаточно громоздким, является обычный арифметический подсчет, который заключается в следующем:

1) из числа, корень которого нам нужен, по очереди вычитаются нечетные числа - до тех пор, пока остаток на выходе не получится меньше вычитаемого или вообще будет равен нулю. Количество ходов и станет в итоге искомым числом. Например, вычисление квадратного корня из 25:

Следующее нечетное число - это 11, остаток у нас следующий: 1<11. Количество ходов - 5, так что корень из 25 равен 5. Вроде все легко и просто, но представьте, что придется вычислять из 18769?

Для таких случаев существует разложение в ряд Тейлора:

√(1+y)=∑((-1) n (2n)!/(1-2n)(n!) 2 (4 n))y n , где n принимает значения от 0 до

+∞, а |y|≤1.

Графическое изображение функции z=√y

Рассмотрим элементарную функцию z=√y на поле вещественных чисел R, где y больше либо равен нулю. График ее выглядит следующим образом:

Кривая растет из начала координат и обязательно пересекает точку (1; 1).

Свойства функции z=√y на поле действительных чисел R

1. Область определения рассматриваемой функции - промежуток от нуля до плюс бесконечности (ноль включен).

2. Область значений рассматриваемой функции - промежуток от нуля до плюс бесконечности (ноль опять же включен).

3. Минимальное значение (0) функция принимает лишь в точке (0; 0). Максимальное значение отсутствует.

4. Функция z=√y ни четная, ни нечетная.

5. Функция z=√y не является периодической.

6. Точка пересечения графика функции z=√y с осями координат лишь одна: (0; 0).

7. Точка пересечения графика функции z=√y также является и нулем этой функции.

8. Функция z=√y непрерывно растет.

9. Функция z=√y принимает лишь положительные значения, следовательно, график ее занимает первый координатный угол.

Варианты изображения функции z=√y

В математике для облегчения вычислений сложных выражений порой используют степенную форму написания корня квадратного: √y=y 1/2 . Такой вариант удобен, например, в возведении функции в степень: (√y) 4 =(y 1/2) 4 =y 2 . Этот метод является удачным представлением и при дифференцировании с интегрированием, так как благодаря ему корень квадратный представляется обычной степенной функцией.

А в программировании заменой символа √ является комбинация букв sqrt.

Стоит отметить, что в данной области квадратный корень очень востребован, так как входит в состав большинства геометрических формул, необходимых для вычислений. Сам алгоритм подсчета достаточно сложен и строится на рекурсии (функции, что вызывает сама себя).

Корень квадратный в комплексном поле С

По большому счету именно предмет данной статьи стимулировал открытие поля комплексных чисел C, так как математикам не давал покоя вопрос получения корня четной степени из отрицательного числа. Так появилась мнимая единица i, которая характеризуется очень интересным свойством: ее квадратом есть -1. Благодаря этому квадратные уравнения и при отрицательном дискриминанте получили решение. В С для корня квадратного актуальны те же свойства, что и в R, единственное, сняты ограничения с подкоренного выражения.

На кружке показала, как в столбик можно извлекать квадратные корни. Вычислить корень можно с произвольной точностью, найти сколько угодно цифр в его десятичной записи, даже если он получается иррациональным. Алгоритм запомнился, а вопросы остались. Непонятно было, откуда взялся метод и почему он дает верный результат. В книжках этого не было, а может, просто не в тех книжках искала. В итоге, как и многое из того, что на сегодняшний день знаю и умею, вывела сама. Делюсь своим знанием здесь. Кстати сказать, до сих пор не знаю, где приведено обоснование алгоритма)))

Итак, сначала на примере рассказываю, “как работает система”, а потом объясняю, почему она на самом деле работает.

Возьмем число (число взято “с потолка”, только что в голову пришло).

1. Разбиваем его цифры на пары: те, что стоят слева от десятичной запятой, группируем по две справа налево, а те, что правее – по две слева направо. Получаем .

2. Извлекаем квадратный корень из первой группы цифр слева — в нашем случае это (ясно, что точно корень может не извлекаться, берем число, квадрат которого максимально близок к нашему числу, образованному первой группой цифр, но не превосходит его). В нашем случае это будет число . Записываем в ответ — это старшая цифра корня.

3. Возводим число, которое стоит уже в ответе — это — в квадрат и вычитаем из первой слева группы цифр — из числа . В нашем случае остается .

4. Приписываем справа следующую группу из двух цифр: . Число , которое уже стоит в ответе, умножаем на , получаем .

5. Теперь следите внимательно. Нам нужно к числу справа приписать одну цифру , и число умножить на , то есть на ту же самую приписанную цифру. Результат должен быть как можно ближе к , но опять-таки не больше этого числа. В нашем случае это будет цифра , ее записываем в ответ рядом с , справа. Это следующая цифра в десятичной записи нашего квадратного корня.

6. Из вычитаем произведение , получаем .

7. Далее повторяем знакомые операции: приписываем к справа следующую группу цифр , умножаем на , к полученному числу > приписываем справа одну цифру, такую, чтобы при умножении на нее получилось число, меньшее , но наиболее близкое к нему –– это цифра –– следующая цифра в десятичной записи корня.

Вычисления запишутся следующим образом:

А теперь обещанное объяснение. Алгоритм основан на формуле

Комментариев: 50

  1. 2 Антон:

    Слишком сумбурно и запутано. Разложите всё по пунктам и пронумеруйте их. Плюс: объясните откуда в каждом действии мы подставляем нужные значения. Никогда раньше не вычислял корень в столбик – разобрался с трудом.

  2. 5 Юлия:

  3. 6 :

    Юлия, 23 на данный момент записано справа, это две первые (слева) уже полученные цифры корня, стоящие в ответе. Умножаем на 2 согласно алгоритму. Повторяем действия, описанные в пункте 4.

  4. 7 zzz:

    ошибка в “6. Из 167 вычитаем произведение 43 * 3 = 123 (129 нада), получаем 38.”
    непонятно как после запятой получилось 08…

  5. 9 Федотов Александр:

    А ещё в докалькуляторную эпоху нас в школе учили не только квадратный, но и кубический корень в столбик извлекать, но это более нудная и кропотливая работа. Проще было таблицами Брадиса воспользоваться или логарифмической линейкой, которую мы уже в старших классах изучали.

  6. 10 :

    Александр, Вы правы, можно извлекать в столбик и корни больших степеней. Я собираюсь написать как раз о том, как находить кубический корень.

  7. 12 Сергей Валентинович:

    Уважаемая Елизавета Александровна! Мной в конце 70-х разработана схема автоматического (т.е. не подбором) вычисления квадр. корня на арифмометре “Феликс”. Если заинтересуетесь, могу выслать описание.

  8. 14 Vlad aus Engelsstadt:

    (((Извлечение квадратного корня в столбик)))
    Алгоритм упрощается, если использовать 2-ную систему счисления, которую изучают в информатике, но полезно и в математике. А.Н. Колмогоров в популярных лекциях для школьников приводил этот алгоритм. Его статью можно найти в “Чебышёвском сборнике” (Математический журнал, ищите ссылку на него в интернете)
    К случаю сказать:
    Г.Лейбниц в свое время носился с идеей о переходе от 10-ной системы счисления к двоичной из-за ее простоты и доступности для начинающих (младших школьников). Но устоявшиеся традиции ломать это все равно что лбом ломать крепостные ворота: можно, но бесполезно. Вот и получается как по наиболее цитируемому в былые времена бородатому философу: традиции всех мертвых поколений подавляют сознание живых.

    До следующих встреч.

  9. 15 Vlad aus Engelsstadt:

    ))Сергей Валентинович, да, мне интересно…((

    Бьюсь об заклад, что это вариация под “Феликс” Вавилонского метода извлечения коня квадратного методом последовательных приближений. Этот алгоритм был перекрыт методом Ньютона (метод касательных)

    Интересно, не ошибся ли я в прогнозе?

  10. 18 :

    2Vlad aus Engelsstadt

    Да, алгоритм в двоичной системе должен быть проще, это довольно очевидно.

    О методе Ньютона. Может, оно и так, но все равно интересно

  11. 20 Кирилл:

    Спасибо большое. А алгоритма так и нету, неизвестно откуда он взялся, но результат правильный получается. СПАСИБО БОЛЬШОЕ! Долго искал это)

  12. 21 Александр:

    А каким образом пойдёт извлечение корня из числа, где вторая слева-направо группа весьма мала? к примеру, любимое всеми число 4 398 046 511 104 . после первого вычитания не получается продолжить всё по алгоритму. Объясните пожалуйста.

  13. 22 Алексей:

    Да, знаю этот способ. Я, помню, вычитал его в книге “Алгебра” какого-то старого издания. Тогда еще по аналогии сам вывел, как так же в столбик извлекать кубический корень. Но там уже сложнее: каждая цифра определяется уже не в одно (как для квадратного), а в два вычитания, да еще там каждый раз надо перемножать длинные числа.

  14. 23 Артем:

    В примере извлечения квадратного корня в столбик из 56789,321 имеются опечатки. Группа цифр 32 приписана дважды к числам 145 и 243, в числе 2388025 вторую 8 необходимо заменить на 3. Тогда последнее вычитание следует записать так: 2431000 – 2383025 = 47975.
    Дополнительно, при делении остатка на увеличенное в два раза значение ответа (без учета запятой), получим добавочное количество значащих цифр (47975/(2*238305) = 0.100658819…), которые следует дописать к ответу (√56789,321 = 238,305… = 238,305100659).

  15. 24 Сергей:

    По всей видимости алгоритм пришел из книги Исаака Ньютона “Всеобщая арифметика или книга о арифметических синтезе и анализе”. Вот выдержка из неё:

    ОБ ИЗВЛЕЧЕНИИ КОРНЕЙ

    Чтобы извлечь из числа квадратный корень, прежде всего следует поставить над его цифрами через одну, начиная с единиц, точки. Затем следует в частном или в корне написать цифру, квадрат которой равен или ближайший по недостатку к цифрам или цифре, предшествующим первой точке. После вычитания этого квадрата остальные цифры корня будут последовательно найдены посредством деления остатка на удвоенную величину уже извлеченной части корня и вычитания всякий раз из остатка квадрата последней найденной цифры и ее удесятеренного произведения на названный делитель.

  16. 25 Сергей:

    Поправьте ещё название книги “Всеобщая арифметика или книга оБ арифметических синтезе и анализе”

  17. 26 Александр:

    Спасибо за интересный материал. Но мне этот метод представляется несколько более сложным, чем нужно, например, школьнику. Я применяю более просто метод, основанный на разложении квадратичной функции с помощью первых двух производных. Формула его такая:
    sqrt(x)= A1+A2-A3, где
    А1 – целое число, квадрат которого ближе всего к х;
    А2 – дробь, в числителе х-А1, в знаменателе 2*А1.
    Для большинства чисел, встречающихся в школьном курсе, этого достаточно, чтобы получить результат с точностью до сотых.
    Если нужен более точный результат, берем
    А3 – дробь, в числителе А2 в квадрате, в знаменателе 2*А1+1.
    Конечно, для применения нужна таблица квадратов целых чисел, но это в школе не проблема. Запомнить эту формулу достаточно просто.
    Меня, правда, смущает, что А3 я получил опытным путем в результате экспериментов с электронной таблицей и не вполне понимаю, почему этот член имеет такой вид. Может, подскажете?

  18. 27 Александр:

    Да, я тоже рассматривал эти соображения, но дьявол кроется в деталях. Вы пишете:
    “поскольку a2 и b отличаются уже довольно мало”. Вопрос именно стоит, насколько мало.
    Эта формула хорошо работает на числах второго десятка и гораздо хуже (не до сотых, только до десятых) на числах первого десятка. Почему так происходит уже трудно понять без привлечения производных.

  19. 28 Александр:

    Я уточню, в чем я вижу преимущество предложенной мной формулы. Она не требует не вполне естественного разбиения чисел на пары цифр, которое, как показывает опыт, часто выполняется с ошибками. Смысл ее очевиден, а для человека, знакомого с анализом, тривиален. Хорошо работает на числах от 100 до 1000, наиболее часто встречающихся в школе.

  20. 29 Александр:

    Кстати, я немного покопался и нашел точное выражение для А3 в моей формуле:
    А3= А22 /2(A1+A2)

  21. 30 vasil stryzhak:

    В наше время, повсеместного использования вычислительной техники, вопрос извлечения квадратного коня из числа с практической точки зрения не стоит. Но для любителей математики, несомненно, представляют интерес различные варианты решения данной задачи. В школьной программе способ данного вычисления без привлечения дополнительных средств должен иметь место наравне с умножением и делением в столбик. Алгоритм вычисления должен быть не только запоминаемым, но и понятным. Классический метод, предоставленный в данном материале для обсуждения с раскрытием сущности, в полной мере соответствует вышеназванным критериям.
    Существенным недостатком предлагаемого Александром способа является использование таблицы квадратов целых чисел. Каким большинством чисел встречающихся в школьном курсе она ограничена автор умалчивает. Что касается формулы, то в целом она мне импонирует в виду относительно высокой точностью вычисления.

  22. 31 Александр:

    для 30 vasil stryzhak
    Я ни о чем не умолчал. Таблица квадратов предполагается до 1000. В мое время в школе ее просто заучивали наизусть и она была во всех учебниках математики. Я в явном виде назвал этот интервал.
    Что до вычислительной техники, то она не применяется, в основном, на уроках математики, если только не идет специально тема применения калькулятора. Калькуляторы сейчас встроены в устройства, запрещенные к применению на ЕГЭ.

  23. 32 vasil stryzhak:

    Александр, спасибо за разъяснение!Я считал,что для предлагаемого метода теоретически необходимо помнить или пользоваться таблицей квадратов всех двузначных чисел.Тогда для подкоренных чисел не входящих в интервал от 100 до 10000 можно использовать прием их увеличения или уменьшения на необходимое количество порядков переносом запятой.

  24. 33 vasil stryzhak:

  25. 39 АЛЕКСАНДР:

    МОЯ ПЕРВАЯ ПРОГРАММА НА ЯЗЫКЕ “ЯМБ” НА СОВЕТСКОЙ МАШИНЕ “ИСКРА 555″ БЫЛА НАПИСАНА ДЛЯ ИЗВЛЕЧЕНИЯ КВАДРАТНОГО КОРНЯ ИЗ ЧИСЛА ПО АЛГОРИТМУ ИЗВЛЕЧЕНИЯ В СТОЛБИК! а сейчас забыл как извлекать в ручную!

Ученики всегда спрашивают: «Почему нельзя пользоваться калькулятором на экзамене по математике? Как извлечь корень квадратный из числа без калькулятора?» Попробуем ответить на этот вопрос.

Как же извлечь корень квадратный из числа без помощи калькулятора?

Действие извлечения корня квадратного обратно действию возведения в квадрат.

√81= 9 9 2 =81

Если из положительного числа извлечь корень квадратный и результат возвести в квадрат, получим то же число.

Из небольших чисел, являющихся точными квадратами натуральных чисел, например 1, 4, 9, 16, 25, …,100 квадратные корни можно извлечь устно. Обычно в школе учат таблицу квадратов натуральных чисел до двадцати. Зная эту таблицу легко извлечь корни квадратные из чисел 121,144, 169, 196, 225, 256, 289, 324, 361, 400. Из чисел больших 400 можно извлекать методом подбора используя, некоторые подсказки. Давайте попробуем на примере рассмотреть этот метод.

Пример: Извлечь корень из числа 676 .

Замечаем, что 20 2 = 400, а 30 2 = 900, значит 20 < √676 < 900.

Точные квадраты натуральных чисел оканчиваются цифрами 0; 1; 4; 5; 6; 9.
Цифру 6 дают 4 2 и 6 2 .
Значит, если из 676 извлекается корень, то это либо 24, либо 26.

Осталось проверить: 24 2 = 576, 26 2 = 676.

Ответ: √676 = 26 .

Еще пример: √6889 .

Так как 80 2 = 6400, а 90 2 = 8100, то 80 < √6889 < 90.
Цифру 9 дают 3 2 и 7 2 , то √6889 равен либо 83, либо 87.

Проверяем: 83 2 = 6889.

Ответ: √6889 = 83 .

Если затрудняетесь решать методом подбора, то можно подкоренное выражение разложить на множители.

Например, найти √893025 .

Разложим число 893025 на множители, вспомните, вы делали это в шестом классе.

Получаем: √893025 = √3 6 ∙5 2 ∙7 2 = 3 3 ∙5 ∙7 = 945.

Еще пример: √20736 . Разложим число 20736 на множители:

Получаем √20736 = √2 8 ∙3 4 = 2 4 ∙3 2 = 144.

Конечно, разложение на множители требует знания признаков делимости и навыков разложения на множители.

И, наконец, есть же правило извлечение корней квадратных . Давайте познакомимся с этим правилом на примерах.

Вычислите √279841 .

Чтобы извлечь корень из многоцифрового целого числа, разбиваем его справа налево на грани, содержащие по 2 цифры (в левой крайней грани может оказаться и одна цифра). Записываем так 27’98’41

Чтобы получить первую цифру корня (5), извлекаем квадратный корень из наибольшего точного квадрата, содержащегося в первой слева грани (27).
Потом вычитают из первой грани квадрат первой цифры корня (25) и к разности приписывают (сносят) следующую грань (98).
Слева от полученного числа 298 пишут удвоенную цифру корня (10), делят на нее число всех десятков раннее полученного числа (29/2 ≈ 2), испытывают частное (102 ∙2 = 204 должно быть не больше 298) и записывают (2) после первой цифры корня.
Потом вычитают от 298 полученное частное 204 и к разности (94) приписывают (сносят) следующую грань (41).
Слева от полученного числа 9441 пишут удвоенное произведение цифр корня (52 ∙2 = 104), делят на это произведение число всех десятков числа 9441 (944/104 ≈ 9), испытывают частное (1049 ∙9 = 9441) должно быть 9441 и записывают его (9) после второй цифры корня.

Получили ответ √279841 = 529.

Аналогично извлекают корни из десятичных дробей . Только подкоренное число надо разбивать на грани так, чтобы запятая была между гранями.

Пример . Найдите значение √0,00956484.

Только надо помнить, что если десятичная дробь имеет нечетное число десятичных знаков, из нее точно квадратный корень не извлекается .

Итак, теперь вы познакомились с тремя способами извлечения корня. Выбирайте тот, который вам больше подходит и практикуйтесь. Чтобы научиться решать задачи, их надо решать. А если у Вас возникнут вопросы, записывайтесь на мои уроки .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.