Кристаллы гидроксиапатита. Филлеры с гидроксиапатитом кальция помогут скорректировать внешний вид

Вот такая статья и фото гуляют уже некоторое время по интернету, читаем:

Революцию в области гигиены рта совершает японский ученый Каузе Ямагаши. Он изобрел зубную пасту, которая быстро и безболезненно восстанавливает зубную эмаль, заделывает дырки и трещины в зубах. И все это без помощи стоматологов! Состав пасты был получен в результате экспериментов с гидроксил-апатитом - главным компонентом зубов - и он схож с составом зубной эмали.

Пасту можно наносить сразу на поврежденный участок зуба. Сначала содержащаяся в веществе кислота слегка растворяет поверхность треснувшей эмали. Спустя три минуты паста кристаллизуется и искусственный материал прочно встраивается в структуру естественной эмали.

Тесты, проведенные японскими стоматологами, показывают, что залеченный с помощью такой пасты зуб ничем не отличается от здорового. Разница не видна даже под микроскопом.

А что же на самом деле?

Начнем с того, что на картинке чёрная корейская паста Charcle с активированным углем (для устранения запаха изо рта)

Вот что пишут на одном из форумов:

В последнее время по рунету пролетела серия статей про зубную пасту с гидроксиапатитом. Фото везде правда были чёрной корейской пасты. Это и сподвигло на заказ в Японии пасты Adguard. На eBay быстро найдены продавцы такой пасты с бесплатной доставкой и ценой 15$. С доставкой соврал = 3,6$
Итак, заказ 1.03 получена на почте 27.03. Меньше месяца, что считаю достаточно быстро. Цена аналога в России 1150р.
Паста пришла мелким пакетом.
Упаковка выше всяких похвал. Сама паста переложена гофрокартоном и завёрнута в пузырку
Паста кстати белая….
А теперь немного подробнее о самой пасте и фирме производителю:

Hydroxyapatite SP-1 - минерал природного происхождения, ячейка его кристалла включает в себя две молекулы.

Примерно 70% твердого основного вещества кости образовано неорганическими соединениями, главным компонентом которых является неорганический минерал гидроксиапатит. Лишенный примесей, он является основным минералом в составе зубной эмали и дентина.

Гидроксиапатит является основным минералом костной ткани и твердых тканей зуба. Керамика на его основе не вызывает реакции отторжения и способна активно связываться со здоровой костной тканью. Благодаря этим свойствам, гидроксиапатит может успешно использоваться при восстановлении поврежденных костей, а также в составе биоактивного слоя для лучшего врастания имплантата.

Обменные реакции на поверхности зуба

Белизна наших зубов зависит от цвета дентина, именуемого еще цветом «слоновой кости». Дентин - это обызвествленная ткань зуба, образующая его основную массу и определяющая его форму. Поверх дентина располагается эмаль - самая твердая ткань организма, защищающая дентин и пульпу зуба от воздействия внешних факторов. Красота наших зубов зависит от состояния эмали. Эмаль здорового зуба полупрозрачна, ее цвет приближен к истинному цвету слоновой кости. Когда эмаль покрывается зубным налетом и пятнами, подвергается резкому механическому воздействию, а также в результате нарушения равновесия между процессами деминерализации и реминерализации, поверхность зуба становится матовой и мутной, а сам зуб нуждается в профессиональном лечении.

Основная составляющая дентина (70%) и эмали (97%)– гидроксиапатит - это биологический фосфат кальция и третий по объему компонент нашего организма (после воды и коллагена). Человеческая слюна, в состав которой входит большое количество ионов кальция и фосфат ионов, является своего рода насыщенным раствором гидроксиапатита. Она защищает зубы, нейтрализуя кислоты зубного налета, и восполняет потерю минералов при деминерализации.

После попадания сахара в полость рта бактерии, находящиеся в зубном налёте, превращают сахар в кислоту, а pH налета резко снижается. Пока этот показатель остается в кислотном диапазоне, и жидкости налета недонасыщены по сравнению с минералами зуба, кислоты, произведенные бактериями, диффундируют сквозь налет и внутрь зуба, вымывая кальций и фосфор из эмали. Происходит деминерализация.

Между периодами образования кислот щелочные буферы, присутствующие в слюне, диффундируют в налет и нейтрализуют присутствующие кислоты, что приостанавливает потерю кальция и фосфора. Происходит реминерализация.

Реминерализация происходит между периодами деминерализации.

Деминерализация

Реминерализация

В идеале, когда эти процессы, протекающие на зубной поверхности, находятся в динамическом равновесии, потери минералов не происходит. Но при избыточном образовании налета, пониженном слюноотделении, приеме пищи, богатой углеводами, баланс полностью смещается в сторону деминерализации. Как следствие, происходит разрушение зуба.

Известно, что на ранней стадии деминерализации, или стадии «белого пятна», развитие кариеса можно предотвратить засчет своевременного поступления необходимого количества минералов. В итоге формируются полноценные ткани зуба, стабилизирующие дальнейшее развитие заболевания и его осложнения.

Инновация на рынке средств по уходу за полостью рта

В 1970 году для удовлетворения потребностей населения компания Sangi Co., Ltd разработала реминерализующую зубную пасту, содержащую наночастицы гидроксиапатита. Впервые ее производство было запущено в 1980 домом Apagard, продажи составили свыше 50 миллионов тюбиков. Затем были проведены расширенные лабораторные испытания активных ингредиентов зубной пасты, после чего в 1993 году гидроксиапатит одобрили в Японии в качестве антикариесного агента. Его назвали медицинским гидроксиапатитом, чтобы отличать от других видов гидроксиапатита (стоматологических абразивов).

Размеры частиц гидроксиапатита, производимого компанией Sangi, измерялись в нанометрах (преимущественно 100 nm и выше). В 2003 г усовершенствованная технология получения гидроксиапатита позволила получать гидроксиапатит с частицами меньшего размера (20-80 nm)

Лабораторные тесты продемонстрировали их большую реминерализующую способность в отношении зубной эмали. (1 нанометр = 0,000001 миллиметра)

Реминерализующие зубные пасты и продукты по уходу за полостью рта c медицинским наногидроксиапатитом, разработанные компанией Sangi, подразделяются на два основных вида:

Впервые Sangi проявил серьезный интерес к гидроксиапатиту после получения от NASA в 1970 году патента на его использование. Третий основной компонент нашего организма после воды и коллагена, гидроксиапатит широко используется в медицине и стоматологической практике, благодаря отличной биосовместимости. Как материал, восстанавливающий костную ткань, он применяется в стоматологии, ортопедии, челюстно-лицевой хирургии при пересадке костей и вживлении имплантатов. Гидроксиапатит добавляется также в парфюмерно-косметические и пищевые изделия, преимущественно в зубные пасты.

На сегодняшний день средства по уходу за полостью рта - основной источник доходов компании, хотя гидроксиапатит входит и во многие другие выпускаемые ими продукты: пищевые добавки, косметические ингридиенты, а также адсорбенты для хроматографического анализа и других исследований.

Приоритетное направление их деятельности - разработка продуктов. И вот уже более 30 лет компания Sangi сосредотачивает свое внимание на научных исследованиях и разработках, тщательно оберегая свой патент. В их распоряжении - более 70 одобренных патентов, касающихся разных сфер применения, еще около сотни находится на стадии рассмотрения в Японии и других странах. В настоящий момент компания Sangi является крупнейшим производителем гидроксиапатита в мире.

Реальную эффективность всего этого конечно надо смотреть на практике применения и опыте. Поройтесь в интернете, почитайте что пишут. Я вообще скептически отношусь ко всяким там видам паст, шампуней и т.п. Зачастую бывает, что это как минимум безопасно и то хорошо, а уж до всяких там уникальных свойств... Вот вам еще немного разоблачений: вот например , а вот и действительно ли А вот говорят, что и вот это Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Физические свойства кристаллов сложных веществ, к которым можно отнести гидроксиапатит (ГА) , в отличии от более простых соединений типа металлов, графита, поваренной соли, носят характер гетеродесмических. Для них внутренние связи наряду с прочными ковалентными связями имеют другие, например, ионные, Ван-дер-ваальсовые, образующие фрагменты. Эти включения, состоящие, в частности, из SO 4 2- , NO 3 - , СO 3 2- , SiO 4 2- и др., могут быть представлены в виде «островов», каркасов, цепочек, слоев. Свободная энергия, которая определяется по формуле:

где U - энергия связи кристалла, S - энтропия, Т - температура, имеет наиболее высокое значение, равное около 20-100 ккал/ моль для ковалентных, а 1 — 10 ккал/моль - Ван-дер-ваальсовых сил. Последним принадлежит ключевая роль в процессах адгезии биополимеров и белков (Бокий, 1971; Киттель, 1978; Прохоров и др., 1995).

Определение свободной энергии в настоящее время возможно преимущественно для простых случаев с использованием зонной теории, предложенной в 1928-1934 гг. Ф. Блохом и Я. Бриллюэном, согласно которой атомы в твердом теле (TiO 2 , MgO, Ti-Ni и т.п.) находятся на расстояниях порядка размера самих атомов. При этом валентные электроны могут распространяться по всему кристаллу, формируя замкнутые энергетические зоны. В зависимости от характера этой зоны, как было показано А. Вильсоном (1931) (частично заполненной, незаполненной, запрещенной, проводимости, неопределенно-валентной и др.) кристаллы проявляют свойства проводника, диэлектрика, полупроводника. В аморфных телах, по-видимому, есть квазизапрещенные энергетические области, являющиеся аналогами зонной структуры, что позволяет им проявлять свойства металлов, диэлектриков и полупроводников (Каганов, Френкель, 1981; Киттель, 1978; Пайерлс, 1956). Характеристики строения кристаллической решетки ГА и ОКФ представлены в таблицах.

Кристаллографические свойства ОКФ и ГА: сравнение рассчитанных d-интервалов для возможных h00 пиков в ОКФ и в ГА (Brown, 1962, Brown et al., 1981)


d h00, A

d h00 , A


Характеристика строения кристаллов ОКФ и ГА


Из биодеградируемых кальциофосфатных материалов, полученных из порошков дикальциофосфата безводного и тетракальций фосфата, готовились стержни или диски с начальным соотношением Са/Р-1,5 и, после дополнительной обработки и прессования, образовывался низкокристаллический гидроксиапатит (ГА). Стержни имплантировались в бедренную кость крысам, и изучалось врастание костной ткани в течение 1-5 недель. Диски культивировались с костными клетками в системе in vitro. При этом происходила замена кальциофосфатного материала новой костью за счет процесса его ремоделирования. Сначала остеокласты и мультиядерные клетки резорбировали материал, а затем остеобласты восстанавливали новую кость в течение 3 недель. В образовавшиеся в материале конусы шириной 0,75 мм, выстланные костными клетками, врастали сосуды, а сама зона неоостеогенеза постепенно расширялась (Foster et al., 1998).

Макротекстурированные поверхности гидроксиапатита обладают более выраженной способностью к интеграции с костной тканью по сравнению с обычными гладкими материалами (Ricci et al., 1998).

Апатит зубов содержит большее количество карбоната и фтора, Mg 2+ , Na + . При этом происходящее замещение ОН на F увеличивает твердость и сопротивляемость к разрушению материала, однако снижает остеоиндуктивные и остеокондуктивные свойства ткани.

Ионы кальция и магния принимают участие в процессах клеточной адгезии (Гольдберг и др., 1992). Вполне логично предположить, что если в кальциофосфатную (КФ) керамику ввести ионы магния, то это может усилить способность поверхности материала прикреплять к себе остеогенные клетки и, тем самым, способствовать процессу связывания костной ткани. Это было подтверждено в опытах на кроликах, которым в бедро имплантировали стержни из TiAlV сплава, покрытые ГА керамикой, нанесенной плазменным напылением. В материал дополнительно с помощью ионной имплантации вносились ионы магния в дозе 1х10 7 см 2 . Оказалось, что через 3 недели, но не ранее, в опытной группе интеграция костной ткани с имплантатом достоверно превышала контрольные значения, что было доказано на ультратонких срезах с использованием флуоресцентных меток (тетрациклин, кальцеин синий, кальцеин зеленый, ализарин красный). Предполагается, что данный эффект обусловлен влиянием магния не только на адгезию костных клеток, но и на функциональную активность остеобластов (Zhang et al., 1998).

Рост костей включает начальное образование аморфного апатитного слоя, который в присутствии воды может частично гидролизироваться с образованием кристаллической структуры гидроксиапатита. Образования, возникающие при этом, очевидно, имеют сложную структуру и симметрию. В реальных условиях все кристаллы разбиты на мозаичные блоки, в которых структуры дезориентированы по отношению друг к другу на малые углы. В костной ткани кристаллы гидроксиапатита ориентированы вдоль коллагеновых волокон. Следует обратить внимание на то, что последние имеют сложную структуру с расположением коллагена по силовым линиям напряжения. Следовательно, процесс кристаллизации гидроксиапатита должен учитывать эту особенность за счет, например, деформации кристаллов в поликристаллической цепи, позволяющей повторять пространственную структуру волокон. Это подразумевает то, что для выполнения биомеханической роли кристаллов гидроксиапатита в костной ткани их форма, размеры и симметрия должны варьироваться. Иначе нарушится структурная и функциональная целостность кости как опорно-двигательного органа.

Из этого вытекает важный практический вывод: при разработке новых биоматериалов на основе гидроксиапатита следует использовать анизотропные кристаллы с изменяющейся формой.

Резюмируя вышесказанное, можно с большой степенью вероятности утверждать, что натуральный гидроксиапатит имеет строго специфическую пространственную организацию, анизотропию, которую чрезвычайно трудно воссоздать в искусственных усло виях. Нарушение структуры КФ, вызванное микроэлементами, анионами или катионами приводит к изменению физико-химических и биологических свойств гидроксиапатитных материалов, что является, очевидно, одной из причин, вызывающих различного рода осложнения при их использовании в травматологии и ортопедии. К сожалению, как мы уже говорили, пока ни одна из известных схем синтеза гидроксиапаптита не позволяет точно повторить особенности кристаллической структуры его естественного изомера. Уровень современной техники еще далек от того, чтобы в искусственных условиях воссоздать направленный рост кристаллов гидроксиапатита, даже из нативных зародышевых матриц. В первую очередь это происходит из-за нарушения равновесных условиях роста кристалла и захвата им технологических примесей, а также способов нанесения ГА покрытий на имплантаты. Следствием вышеуказанных процессов является возникновение точечных дефектов, дислокации и секторированию кристаллической структуры гидроксиапатита , со всеми вытекающими из этого последствиями.

А.В. Карпов, В.П. Шахов
Системы внешней фиксации и регуляторные механизмы оптимальной биомеханики

Был ли у Вас повод задуматься о том, что такое оригинальный препарат?

Ещё в 2004 году Всемирная Организация Здравоохранения приняла резолюцию, провозгласившую своей самой приоритетной задачей радикальное увеличение безопасности лечения.

Особый акцент в ней сделан на право больного знать всё о своём заболевании, методах его лечения и на необходимости получения информированного согласия больного на лечение, что, логично, предполагает предварительное разъяснение пациенту различий между «аналогами» препаратов.

Наведём «порядок» в определениях!

Оригинальный препарат – это препарат, который создан на основе новой, впервые синтезированной или полученной из природного сырья субстанции, прошёл полный курс доклинических и клинических исследований эффективности и безопасности и защищён патентом на определённый срок. В странах ЕС этот срок составляет 10–15 лет, в Украине - 20 лет.

Дженерик – это последователь, препарат, который появился после окончания срока патента. Минимизация затрат на производство и использование самых дешёвых ингредиентов приводит к тому, что знает каждый доктор - слишком дешёвые препараты не работают! Качественный дженерик не может быть дешёвым!

Лифтинговый филлер Radiesse - первый и единственный оригинальный препарат на основе гидроксиапатита кальция. Его уникальная формула на 30% состоит из микросфер гидроксиапатита кальция (CaHA) диаметром 25-45 мкм.

На что же нужно обратить внимание при выборе препарата гидроксиапатита кальция?

  • ЦВЕТ

Цвет Radiesse - белый.

Другие препараты, имеющие в своем составе гидроксиапатит кальция отличаются от цвета оригинального препарата. Их цвет - серый.

Белый цвет Radiesse определяется его уникальным производством, во время которого обработка ГАК производится в вакууме, что не даёт ему окислиться и изменить цвет, а также сохраняет диаметр микросфер стабильным и неизменным.

Как же это происходит?

В процессе окислительно-восстановительной реакции восстановитель отдаёт электроны, то есть окисляется. Любая окислительно-восстановительная реакция представляет собой единство двух противоположных превращений - окисления и восстановления, происходящих одновременно и без отрыва одного от другого. При окислении вещества в результате отдачи электронов увеличивается его степень окисления. В результате такого процесса препарат приобретает серый цвет. Также при окислении молекула исходного вещества может стать нестабильной и распасться на более стабильные и более мелкие составные части.

  • РАЗМЕР МИКРОСФЕР

Микросферы гидроксиапатита Radiesse округлые с гладкой поверхностью. Их размер самый безопасный – 25-45 микрон. Микросферы другого размера отсеиваются при производстве.

Больший разбег по размеру микросфер гидроксиапатита у других препаратов, имеющих в составе гидроксиапатит кальция – 15-60 микрон - говорит об их качестве и безопасности и, конечно, это объясняет их стоимость.

Микросферы до 25 микрон , которые создают массу, и, тем самым, удешевляют препарат, попадая в сосудистое русло или в лимфорусло, могут накапливаться в тех структурах, которые мы не предполагаем.

Размер больше 45 микрон вызывает стимуляцию травматической природы фибробласта, которая в свою очередь вызывает патологический фиброз.

  • БИОДЕГРАДАЦИЯ

Микросферы Radiesse медленно распадаются в результате естественных внутренних механизмов фагоцитоза. Вырабатываемый кальций и фосфат ионы идентичны минералам, которые содержатся в организме.

  • ПРОФИЛЬ БЕЗОПАСНОСТИ

Согласно международному стандарту дженерик – это лекарственный продукт с доказанной, в том числе и терапевтической эквивалентностью, с оригиналом.

«Терапевтически эквивалентными препараты могут считаться только в том случае, если они фармацевтически эквивалентны и можно ожидать, что они будут иметь одинаковый клинический эффект и одинаковый профиль безопасности при введении пациентам в соответствии с указаниями в инструкции», – FDA, Electronic Orange Book. Approved Drug Products with Therapeutic Equivalence Evaluations, 23th Edition, 2003.

Дженерик терапевтически эквивалентен другому препарату, если он содержит ту же активную субстанцию и, по результатам клинических исследований, обладает такой же эффективностью и безопасностью, как и препарат сравнения, чья эффективность и безопасность установлены.

Надо отметить, что сравнительное исследование должно проводиться по определённым правилам (GCP – надлежащая клиническая практика) и должно быть: независимым, многоцентровым, рандомизированным, контролируемым, длительным (средняя продолжительность лечения), с жёсткими конечными точками.

Отсутствие исследований на терапевтическую эквивалентность при регистрации дженериков имеет многочисленные негативные последствия.

В то же время неоспоримыми преимуществами оригинальных препаратов являются:

  • доказанная эффективность;
  • доказанная безопасность;
  • инновационность;
  • воспроизводимость эффекта;
  • жёсткий контроль качества.

Лифтинговый филлер Radiesse в 2003 году получил Европейский Сертификат (ЕС) соответствия для пластической и реконструктивной хирургии. В 2006 году одобрен FDA, в 2011 году зарегистрирован МОЗ Украины.

К 2016 году продано более 6 000 000 шприцев во всем мире.

  • ИССЛЕДОВАНИЯ ЭФФЕКТИВНОСТИ И БЕЗОПАСНОСТИ

Эффективность и безопасность Radiesse подтверждают :

  • Более 20 0 клинических исследований и научных публикаций.
  • Клинические данные о более чем 5000 пациентах по всему миру.
  • Дермальный филлер Radiesse является одним из самых безопасных дермальных филлеров , доступных на рынке.
  • Отличная переносимость и безопасность клинически доказана.
  • 90% удовлетворённых пациентов после 12 месяцев.
  • Доверие по всему миру с поставкой более чем 6 миллионов шприцев.

Что делать доктору, если он действительно хочет качественно и безопасно лечить пациента?

Статья на конкурс «био/мол/текст»: Заболевания, связанные с повышенной скоростью деградации костной ткани у пожилых людей, все острее ощущаются населением. Во многом это связано с увеличением продолжительности жизни вообще и состариванием так называемого «золотого миллиарда». Новые материалы на основе фосфатов кальция, пригодные для имплантации больным остеопорозом, могут частично решить эту проблему.

Современная наука ставит одной из главных своих целей продление длительности человеческой жизни. Разрабатываются новые методы лечения заболеваний, облегчается жизнь стариков, многие болезни, считавшиеся неизлечимыми ранее, практически полностью побеждены человечеством. Однако некоторые возрастные изменения заложены в организм генетически, и обычными методами с ними бороться практически невозможно.

Заболевания костной ткани занимают одну из первых строчек в рейтинге наиболее часто встречающихся у пожилых людей проблем. С возрастом нарастает потеря массы кости. Особенно от этого страдают женщины - из-за более активного вымывания из организма катионов кальция, служащего основой нашего скелета. Потеря массы костной ткани может достигать 40% у женщин старше 70 лет !

Это заболевание называется остеопорозом . Пораженные им кости становятся хрупкими, с трудом справляясь с возложенной на них нагрузкой. В случае перелома срастаться такая кость будет значительно дольше, чем здоровая. Как уже упоминалось выше, главной причиной таких изменений является постепенное вымывание кальция из организма. На протяжении всей жизни у нас в организме происходят два равновесных процесса: непрерывное образование новой костной ткани и резорбция (растворение) старой. К старости равновесие смещается в сторону резорбции, и новая ткань просто не успевает занять место растворенной. А избыток катионов кальция, являющегося основным продуктом этого процесса, выводится из организма естественным путем.

Что же представляет собой человеческая кость? На рисунке 1 схематически изображено строение кости человека. Основа состоит из композита (материала, составленного из других материалов и обладающего свойствами, отличными от свойств «родителей»), представляющего собой кристаллы нестехиометрического гидроксилапатита с химической формулой:

Ca 10−x−y/2 (HPO 4) x (CO 3) y (PO 4) 6−x−y (OH) 2−x ,

Таким образом, полная замена кости на искусственный материал нежелательна. Наиболее предпочтительным путем к регенерации костной ткани на сегодняшний день стала замена поврежденной части ткани на биоактивный протез, который срастется с окружающими тканями, затем ускорит естественную регенерацию и постепенно растворится без следа, оставив на костном дефекте новую ткань.

Рисунок 2. Индивидуальный протез фрагмента нижней челюсти для больного саркомой нижней челюсти. Протез изготовлен из полимера и гидроксилапатита.

Традиционно в ортопедии для этих целей применяется гидроксилапатит . Стехиометрически гидроксилапатит (далее для краткости мы будем называть его ГАП) наиболее приближен по составу к минеральной составляющей кости (по сравнению с другими фосфатами кальция). Его формула:

Что собой представляет гидроксилапатит?

Долгое время считалось, что гидроксилапатит Ca 10 (PO 4) 6 (OH) 2 - идеальный в плане биосовместимости материал для восстановления поврежденных костей и зубов. Первая документированная попытка использовать ГАП в качестве остеозамещающего материала относится к 1920-м годам. Однако успешное применение ГАП в указанных целях совершилось только через 60 лет. Гидроксилапатит прекрасно совместим с мускульной тканью и кожным покровом; после имплантации он может напрямую срастаться с костной тканью в организме. Высокая биосовместимость гидроксилапатита объясняется кристаллохимическим подобием искусственного материала костному «минералу» позвоночных.

Название минерала происходит от греческого «апатао» - обманываю, поскольку красиво окрашенные природные разновидности апатитов часто путали с бериллами и турмалином. Несмотря на очень широкий спектр окраски природных апатитов, вызванных различными примесями, низкая твердость (он является эталоном значения 5 по 10-балльной шкале Мооса) не позволяет рассматривать его как полудрагоценный поделочный камень.

Известно, что костный минерал содержит в заметном количестве (~8% по массе) карбонат-ионы; существует также природный минерал сходного состава - даллит. Считается, что карбонат-ионы могут занимать две разные позиции в структуре ГАП, замещая гидроксил и/или фосфат-ионы с образованием карбонатгидроксилапатита (КГАП) А- и Б-типа, соответственно. Апатит биологического происхождения относится к Б-типу. Замещение фосфат-ионов карбонат-ионами приводит к уменьшению размеров кристаллов и степени кристалличности ГАП, а это сильно затрудняет исследование природных биоминералов. Увеличение доли карбонат-ионов в составе гидроксилапатита вызывает закономерные изменения в равновесной форме кристалла. Игольчатые кристаллы «сплющиваются» до пластин, которые очень похожи на кристаллиты существующего в организме апатита . Таким образом, внесением в синтезируемый минерал небольшой доли карбонат-ионов можно получить материал, аналогичный биогенному и по химическому составу, и геометрически.

Важной характеристикой ГАП является стехиометрия его состава, которую принято выражать соотношением Ca/P. Переменный состав вызван тем, что при синтезе ГАП из раствора нельзя защититься от ионов H 3 O + и HPO 4 2 − , которые могут замещать соответственно ионы Са 2+ и РО 4 3 − в кристаллической структуре гидроксилапатита.

Как используется гидроксилапатит?

Существуют различные методы синтеза гидроксилапатита. Их можно условно разделить на высоко- и низкотемпературные. Высокотемпературные методы не представляют для нас большого интереса, так как полученные таким образом материалы практически не биоактивны. Низкотемпературные методы можно разделить на две большие группы: гидролиз (в том числе так называемые гидротермальные методы синтеза) и осаждение из раствора . Интересен так же комбинированный метод так называемого золь–гель синтеза . В нем сухой остаток геля подвергается разложению при относительно невысокой температуре 400–700 °С (по сравнению с высокотемпературным синтезом). Материалы, полученные таким образом, представляют собой твердую, пористую керамику, по химическому составу и физическим свойствам напоминающую минерал кости.

Как реагирует организм на кальций-фосфатную керамику?

Биоактивность - комплексная характеристика совместимых с организмом материалов, учитывающая, помимо воздействия на биологические процессы роста и дифференциации клеток, также:

  • скорость растворения материала в средах, создаваемых определенными группами клеток (биорезорбируемость);
  • скорость осаждения материала из межтканевой жидкости на поверхность материала.

Среди требований, которые предъявляются к биоактивным материалам, применяемым в медицинской практике для восстановления целостности костной ткани, на первом месте стоят относительно высокая скорость растворения (порядка десятков мкм в год) - так называемая биорезорбируемость . Активную роль в биохимических реакциях, протекающих на границе раздела кость/имплантат с участием клеток специфических для процесса остеосинтеза, играет поверхность. Говоря о скорости резорбции материала, находящегося в межтканевой жидкости, принято сравнивать новые материалы с уже используемыми в медицине - керамикой на основе гидроксилапатита или β-трикальцийфосфата. Крупнокристаллическая керамика на основе ГАП резорбируется медленно, так что включения искусственного материала можно обнаружить в кости и через много лет. Керамика, полученная с использованием β-Ca 3 (PO 4) 2 , растворяется столь быстро, что растущая кость не успевает заполнить образующиеся полости. Скорость растворения материала зависит от множества факторов: площади поверхности, строения, состава, дефектности материала. Эти характеристики определяют отклик организма на инородный имплантат. Биоактивные материалы характеризуются быстрым срастанием с костной тканью через образование промежуточного слоя ГАП, образующегося двумя возможными путями:

  1. Растворение фосфата кальция - осаждение гидроксилапатита.
  2. Осаждение ГАП из пересыщенного раствора в тканевой жидкости.

Важная процедура оценки биоактивности подразумевает тестирование in vivo . Это дорого и долго, а также сопряжено с риском. Однако ведется активная разработка методик, позволяющих уже на раннем этапе доклинических испытаний ранжировать материалы по степени биоактивности в ходе относительно простых экспериментов in vitro , моделирующих процессы в организме человека - растворение материала и осаждение ГАП на поверхности материала из растворов, подобных жидкостям организма.

Исследование биоактивности материалов проводят с использованием раствора, имитирующего ионный состав межтканевой жидкости человека. Компактные образцы исследуемого материала помещают в раствор на несколько суток при 37 °С. Процесс осаждения карбонатгидроксилапатита из модельного раствора на поверхность материала контролируют методами рентгенофазового анализа, ИК-спектроскопии и растровой электронной микроскопии.

Существует необходимость регулировать биорезорбируемость искусственных материалов, в зависимости от их назначения. Такая возможность существует благодаря различию свойств материалов с разным составом. Чтобы сделать образец более резорбируемым, нужно увеличить долю карбонат- и силикат-ионов в кристаллической решетке материала.

Рисунок 3. Ажурный слой частично резорбированной керамики. Снимок со сканирующего электронного микроскопа. Здесь изображен фрагмент материала, подвергнутый растворению в модельном растворе in vitro . Справа можно увидеть, каким был материал до начала резорбции.

Наилучшую биоактивность в таких исследованиях проявляет кремнийсодержащий материал. На его поверхности образуются силанольные (-SiOH) группы, активно участвуя в минерализации внешнего слоя имплантата. Такой материал интенсивно обменивается ионами с раствором: силанольные группы прочно связывают ионы кальция, способствуя формированию слоя аморфного фосфата кальция на поверхности, расслоение и кристаллизация которого приводит к образованию ажурного слоя, состоящего из частиц ГАП размером ~10 нм (рис. 3). Различия в толщине такого слоя могут служить мерой биоактивности материала: чем он толще, тем проще кость будет встраивать этот материал в свою структуру.

Еще одним из важнейших свойств современных имплантационных материалов является остеоиндуктивность - способность поддерживать жизнедеятельность остеобластов и стимулировать эктопическое (вне кости) образование костной ткани de novo . Это важнейшее свойство для искусственных имплантов. Дело в том, что для инициации костеобразования вокруг импланта необходимо микроокружение частицами живой кости. Вновь образующаяся кость постепенно срастается с окружающими имплантированными частицами, «перескакивая» с одной на другую.

Считается, что наиболее активным с точки зрения остеосинтеза является аморфная модификация гидроксилапатита. Однако в достаточной степени кристалличный ГАП с размерами кристаллитов, приближающимися к размерам кристалла в костной ткани (20–40 нм 3), может показывать результаты на порядок выше аморфных цементов, использующихся в настоящее время .

Биоинертные материалы никак не влияют на процесс остеосинтеза. На поверхности изготовленных из них имплантатов происходит образование фиброзной ткани, препятствующей образованию связи имплантата с костью. Существует значительная вероятность отторжения таких материалов организмом, часто сопровождающегося воспалительными процессами. Тем не менее, полностью отказаться от этих материалов пока нельзя, поскольку они дешевы и легки в обработке. Основные проблемы, которые решаются при проектировании имплантатов из биоинертных материалов, - приближение упругих характеристик имплантата к характеристикам кости, а также снижение скорости коррозионных процессов.

В отличие от биоинертных синтетических материалов на основе полимеров и металлов, керамика на основе фосфатов кальция биосовместима и биоактивна, а значит, является наиболее перспективным материалом для костных имплантатов. Главным ее недостатком является хрупкость. Пока что наилучшим выходом является применение композитов из покрытых кальцийфосфатной керамикой металлов или полимеров (рис. 4). Они хорошо обеспечивают интеграцию материала в костную ткань, не позволяя образовываться фиброзной ткани вокруг биоинертного металла. Со временем протез очень прочно срастется с окружающей костью, которая заменит слой ГАПа. Процент отказа таких протезов значительно ниже, чем у металлических и пластиковых аналогов.

Рисунок 4. Покрытие из биоактивной керамики на протезе тазобедренного сустава. а - Пористая структура керамического покрытия. б - Рентгеновский снимок протеза, имплантированного на место тазоберенного сустава. Сам протез изготовлен из титана и полимеров.

Как придать ГАПу новые свойства?

Не все свойства, необходимые для протезирования, заложены в гидроксилапатит природой. Однако какие-то терапевтические эффекты к материалам можно добавить, усложняя состав композита дополнительными веществами. Однако это не очень удобно, так как усложнит клинические испытания, да и разрабатывать такой материал значительно труднее. Но можно добиться прогресса и получить уникальные свойства, незначительно модифицируя состав и вводя в решетку гидроксилапатита примеси других катионов и анионов. Изменяя состав керамики, можно варьировать ее прочность, размер и форму кристаллитов, скорость растворения и множество других параметров.

Модифицировать кальций-фосфатную керамику можно введением множества компонентов. Возможности для выбора такого модификатора (легирующего компонента) довольно широки: в зависимости от размеров замещаемого иона можно менять состав как на доли, так и на десятки процентов. Например, малые концентрации ионов кремния активируют регенерацию костной ткани, играя роль антигена для соответствующих клеток.

Интересны, например, биологические свойства катионов лантаноидов . Применение ионов лантаноидов в пероральных препаратах ограничено их низкой способностью проходить сквозь стенки желудка и кишечника. Для улучшения доступности катионов лантаноидов можно использовать липофильные оболочки комплексов. Вещества, способные проникать сквозь клеточные мембраны, называются ионофорами . (Подробнее о них можно прочитать в статье «Неизвестные пептиды: „теневая“ система биорегуляции » .) Такая оболочка позволит им проникать сквозь мембрану клетки. Этот метод доставки ионов в остеобласты может стать принципиально новым подходом к лечению целого ряда заболеваний кости.

Благодаря высокому сродству к фосфатам лантаноиды прочно связываются в структуре минералов, составляющих основу костной ткани, не нарушая при этом их структуру. Лантаноиды способны даже замещать кальций в костях, параллельно подавляя развитие клеток, отвечающих за разрыв и резорбцию костной ткани. Эта способность «подражать» функциям ионов кальция позволяет рассматривать лантаноиды в качестве компонента для терапии заболеваний кости.

Частичный обмен катионов кальция на катионы лантаноидов открывает широкие перспективы для целого ряда различных материалов на основе фосфатов кальция. С помощью лантаноидов можно влиять на физические свойства получаемой керамики, регулировать скорость резорбции и даже использовать этот материал как препарат для лечения остеопороза.

На практике ГАП используют в виде цемента или пористых вкладок для заполнения трещин, каверн и других дефектов в ортопедии и челюстно-лицевой хирургии. В виде пленки его наносят на протезы из других материалов (чаще всего металлических или полимерных) для снижения риска отторжения и лучшей фиксации за счет образования новых тканей вокруг протеза. Как правило, это протезы тазобедренного сустава и различные зубные протезы.

Разумеется, искусственно синтезированный гидроксилапатит далек от идеала, и в качестве материала для имплантации при создании полноценных протезов крупных костей или суставов его пока использовать нельзя. Но использование его замечательных свойств, таких как сравнительно простое регулирование состава и морфологии кристаллитов, биоактивность и способность ускорять естественную регенерацию, позволяет делать на его основе препараты для исправления и профилактики костных дефектов уже сейчас. А это значит, что в обозримом будущем мы сможем значительно упростить лечение остеопороза, ускорить излечение переломов, а, возможно, даже и возвращать утраченные конечности с помощью искусственных костей.

Литература

  1. Larry L. Hench. (2005). Bioceramics . Journal of the American Ceramic Society . 81 , 1705-1728;
  2. Вересов А.Г., Путляев В.И., Третьяков Ю.Д. (2000). Достижения в области керамических материалов. «Рос. Хим. Журн.» 6 , 32–46;
  3. Larry L. Hench. (2006). The story of Bioglass® . J Mater Sci: Mater Med . 17 , 967-978;
  4. Дорожкин С.В. и Агатопоулус С. (2002). Биоматериалы: Обзор рынка. «Химия и жизнь» . 2 , 8;
  5. E. D. Eanes, A. W. Hailer. (1998). The Effect of Fluoride on the Size and Morphology of Apatite Crystals Grown from Physiologic Solutions . Calcif Tissue Int . 63 , 250-257;
  6. Qinghong Hu, Zhou Tan, Yukan Liu, Jinhui Tao, Yurong Cai, et. al.. (2007). Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells . J. Mater. Chem. . 17 , 4690;
  7. Cheri A. Barta, Kristina Sachs-Barrable, Jessica Jia, Katherine H. Thompson, Kishor M. Wasan, Chris Orvig. (2007). Lanthanide containing compounds for therapeutic care in bone resorption disorders . Dalton Trans. . 5019;
  8. Неизвестные пептиды: «теневая» система биорегуляции ;
  9. G. Renaudin, P. Laquerrière, Y. Filinchuk, E. Jallot, J. M. Nedelec. (2008). Structural characterization of sol–gel derived Sr-substituted calcium phosphates with anti-osteoporotic and anti-inflammatory properties . J. Mater. Chem. . 18 , 3593.

Для коррекции внешности специалисты в области косметологии советуют применять филлеры. Особой популярностью среди пациентов пользуются наполнители на основе гидроксиапатита кальция. Одним из известных высокотехнологичных филлеров является . Препарат содержит два компонента:

  • кристаллы гидроксиапатита кальция;
  • гель.

Что такое гидроксиапатит

Гидроксиапатит – это вещество, присутствующее в органическом матриксе костных тканей. В состав входят:

  • фосфор;
  • кальций.

Содержит макроэлементы магния, железа, цинка и бора. По своей формуле схож со строением костной ткани человека. Благодаря этому свойству происходит его положительное усвоение организмом. Гидроксиапатит часто присутствует в косметике в виде нано частиц. В природе встречается в микрокристаллической форме. Для получения препарата вещество измельчают до состояния порошка белого цвета и смешивают с очищенной водой.

Где применяется

Препарат широко используется в:

  • стоматологии;
  • ортопедии;
  • челюстно-лицевой хирургии;
  • нейрохирургии;
  • офтальмологии;
  • отоларингологии;
  • косметологии.

В косметологической отрасли используется в виде основы для филеров. В стоматологии присутствует в зубной пасте и средствах для ухода за полостью рта. Для восполнения нехватки в организме может выпускаться в форме таблеток.

Принцип воздействия на организм

Механизм действия на организм следующий:

  1. Филлеры с гидроксиапатитом кальция вводятся в проблемную область.
  2. В результате внедрения морщины разглаживаются и кожа становится эластичной.
  3. С течением времени гель перерабатывается организмом и гидроксиапатит кальция активизирует синтез коллагена.
  4. Далее коллаген формирует новую кожную структуру с сохранением эффекта оздоровления до двух лет.

Плюсы и минусы применения в косметологии

К благоприятным характеристикам препарата относятся:

  • низкий риск аллергического проявления;
  • положительная реакция на усвояемость;
  • совместимость с тканями;
  • способность активизации синтеза коллагена;
  • продолжительность действия.

Отрицательная сторона применения лекарства:

  • невозможность вывода из организма;
  • запрет на использование гиалуроновой кислоты на срок до 1 года.

Показания и противопоказания

Задействовать состав можно в следующих случаях:

  • коррекция формы лица;
  • наполнение носогубной области;
  • ликвидация морщин;
  • устранение рубцов;
  • корректировка щек, подбородка, скул, ушей, висков, носа, кистей рук.

С помощью гидроксиапатита кальция можно скорректировать проблемные зоны с долго выраженным действием.

Использование препарата может нанести вред здоровью при следующих отклонениях:

  • инфекционные заболевания;
  • кожные болезни;
  • онкология;
  • сахарный диабет;
  • аутоиммунные заболевания;
  • неудовлетворительная свертываемость крови;
  • беременность;
  • лактация;
  • менструация.

На приеме у лечащего врача необходимо сообщить о возможности аллергии и принимаемых лекарствах.

Инструкция по применению

Порядок использования филлера следующий:

  • разметка проблемной зоны;
  • определение дозировки;
  • обработка антисептиком;
  • применение анестезии;
  • введение препарата сверхтонкой иглой;
  • нанесение противовоспалительного крема.

Проведение сеанса можно увидеть в этом видео:

Проводить процедуру может только высококвалифицированный врач-косметолог, прошедший специализированное обучение по использованию филлеров.

Для быстрого восстановления после процедуры необходимо придерживаться следующих правил:

  • отказаться от косметического макияжа;
  • прикладывать пакетики со льдом к местам уколов;
  • не употреблять алкоголь;
  • не посещать баню;
  • не массажировать проблемную область;
  • ограничить физические нагрузки;
  • спать на спине;
  • не принимать солнечные ванны.

Побочное действие и осложнения

Возможно проявление нежелательных последствий:

  • аллергическая реакция;
  • микро гематомы;
  • покраснение проблемной области;
  • онемение;
  • отеки;
  • синяки.

При выполнении рекомендаций по реабилитации отрицательные действия проходят самостоятельно через двое суток. Исключения составляют осложнения, вызванные непрофессиональными действиями специалиста при проведении процедуры в виде:

  • неровности и асимметрия кожного покрова;
  • выпирание геля в проблемной зоне;
  • белые полосы в месте введения;
  • воспалительная реакция.