Способы искусственного переохлаждения. «Было бы интересно сделать скафандр для погружения в Марианскую впадину Факторы, определяющие потерю тепла в периоперационном периоде

Локальная гипотермия занимает ведущее место в неотложной хирургии брюшной полости. Этот способ гипотермии оказывает как местное, так и рефлекторное положительное влияние на симпатическую часть вегетативной нервной системы, снижает ее перенапряжение, что способствует стабилизации воспалительного процесса и ограничению области поражения.

Холод снижает секреторную функцию желудка. Вот несколько примеров, полученных в результате опытов. Крысам, голодавшим в течение суток, давали кусочек мяса массой 2 г. Через 6 часов масса извлеченного кусочка составляла 0,4 г. У крыс, погруженных в ледяную воду, вызывающую понижение температуры тела, за 6 часов переваривалось только 0,2 г мяса.

В желудке собаки, охлажденном до 17-20°С, через 6 часов сохранялось 1/4 кусочка мяса. При отсутствии охлаждения за это же время мясо полностью переваривалось. Лягушка, помещенная в желудок собаки, переваривалась за 6 ч. При температуре тела 10-14°С лягушка оставалась живой даже через 36 ч.

Эти примеры убедительно иллюстрируют характер действия охлаждения на желудочную секрецию - наступает торможение выделительной функции желудка и снижается активность его секрета.

Американские ученые доказали, что желудочный сок больного язвенной болезнью двенадцатиперстной кишки при температуре 8°С полностью теряет пептическую активность. При локальной гипотермии желудка в пределах 13-16°С объем желудочного сока уменьшался на 40%, содержание хлористоводородной кислоты - на 100%, пепсина - на 46 %. Минимальный уровень пепсиногена в крови отмечается через 1,5 ч после начала гипотермии желудка. При согревании желудка уровень пепсиногена быстро попытается и уже через полчаса достигает максимального, превышая исходные величины.

Британские ученые исследовали изменения слизистой оболочки желудка и зависимости от степени и длительности охлаждения. При температуре 10-15°С, поддерживавшейся и течение 5-7 дней, они наблюдали отек слизистой оболочки с участками кровоизлияний. Охлаждение желудка и течение 2 суток не вызывает изменений слизистой оболочки желудка. Охлаждение угнетает моторику желудка. При температуре 15°С кровоснабжение желудка уменьшается на 66%, печеночный кровоток снижается на 30%.

Воздействие локальной гипотермии на кровоток, секрецию и моторику желудка было использовано для лечения ряда заболеваний, главным образом желудочного кровотечения различной этнологии.

Большинство специалистов указывают на высокую эффективность гипотермии при язвенных кровотечениях, особенно из язв двенадцатиперстной кишки. Механизм действия холода при указанной патологии до конца не выяснен.

Однако, было показано, что при гипотермии желудка увеличивается число тромбоцитов, уменьшается время рекальцификации плазмы и продолжительность кровотечения. Отмечено снижение кровотока в панкреатической и дуоденальной артериях.

Есть множество примеров успешного применения локальной гипотермии у больных с желудочным кровотечением. Она позволяет выиграть время, в течение которого больного можно подготовить к оперативному вмешательству.

При охлаждении желудка количество секретируемого панкреатического сока падает, уменьшается концентрации амилазы в моче, резко снижается содержание трипсина после активации его энтерокиназой.

Американские ученые изучили воздействие локальной гипотермии на секрецию поджелудочной железы в эксперименте на животных с фистулой железы. Они установили, что охлаждение снижает секрецию поджелудочной железы на 62% и содержание амилазы в сыворотке крови на 51% по сравнению с контрольной группой животных. Уровень ингибитора трипсина в крови понизился или остался без изменений. На 70% снижалась активность трипсина.

Немецкие ученые-медики, изучая влияние гипотермии на течение острого панкреатита в эксперименте, пришли к выводу, что методика, проведенная животным не позже 4 часов с момента моделирования острого панкреатита, купировала дальнейшее развитие острого воспалительного процесса, а через 5-6 часов - значительно облегчала течение заболевания и предотвращала деструктивные изменения в железе. Гипотермия, проведенная спустя 6 часов, не оказывала положительного влияния ни па патологический процесс в органе, ни на выживаемость животных. Гистологические исследования показали, что гипотермия наиболее эффективна в течение первых 4 часов от начала заболевания, когда еще не возникли тяжелые деструктивные изменения в поджелудочной железе. Позже, хотя гипотермия и подавляет ферментативную активность железы, на выживаемость животных она не влияет. Поэтому гипотермия при остром панкреатите тем эффективней, чем раньше она применена.

Локальная гипотермия в условиях экспериментального панкреатита снижает потребность в кислороде, что объясняется также торможением обменных процессов в поджелудочной железе.

Действие локальной гипотермии на течение острого панкреатита во многом связано с подавлением обменных процессов в железе, устранением или уменьшением явлений клеточной гипоксии, которая возникает при деструктивном панкреатите вследствие тромбоза сосудов и отека стромы, предотвращая гипоксическую гибель клеток. Замедление обменных процессов при сохраняющемся на довольно высоком уровне кровотоке способствует «вымыванию» из ткани железы продуктов распада и токсических метаболитов, рассасыванию интерстициальной жидкости, то есть ликвидации отека.

Снижение температуры тела до 30°С при общем охлаждении ведет к уменьшению продукции панкреатических ферментов, но выживаемость животных при общей гипотермии значительно ниже, чем при локальной.

Положительные результаты экспериментальных исследований по применению гипотермии, прежде всего локальной, при остром панкреатите позволили внедрить этот метод для лечения больных с острыми воспалительными процессами поджелудочной железы.

Применение общей гипотермии при остром панкреатите в клинических условиях не получило широкого распространения в связи с тем, что значительное снижение температуры тела приводит к тяжелым осложнениям, а степень положительного воздействия на патологические процессы в железе при этом невелика.

Применение локальной гипотермии патогенетически обосновано и при тяжелом течении острого панкреатита, различной степени тяжести деструктивных процессов в поджелудочной железе, когда наряду с другими изменениями нарушаются и реологические свойства крови, все функции транспорта и потребление кислорода, что приводит к гипоксии тканей, тяжелым метаболическим расстройствам. В этих случаях локальная гипотермия повышает устойчивость тканей и железы к ишемии, уменьшает органный метаболизм, что тормозит прогрессирование некротических процессов в органе и организме в целом в условиях нарушенной микроциркуляции в поджелудочной железе. Известен и тот факт, что при охлаждении все органы, за исключением сердца и печени, находятся в состоянии анабиоза, что является также важным обоснованием применения локальной гипотермии при тяжелом течении острого панкреатита.

Локальная гипотермия нашла применение при кровотечениях у больных с дивертикулитом сигмовидной ободочной кишки и язвенно-геморрагическим колитом.

При воздействии гипотермии необходимо учитывать скорость охлаждения тканей, длительность экспозиции и температуру холодового агента. По-видимому, одним из основных условий применения гипотермического метода являются физические параметры охлаждения, временно изменяющие обменные процессы в тканях.

Не менее важными в обосновании применения любого метода охлаждения в неотложной брюшной хирургии являются конституциональные особенности больного и характер течения основного и сопутствующего заболеваний.

Перечисленные свойства локаьной гипотермии патофизиологически обосновывают целесообразность ее применения при неотложных хирургических заболеваниях органов брюшной полости.

- Как и когда начались исследования в области жидкостного дыхания?

Исторически интерес возник еще в начале ХХ века. Тогда медики использовали солевой раствор, чтобы понять, насколько растяжимы легкие человека. Сегодня наполнение легких физиологическим раствором изучают студенты в курсе медицины. Но, конечно, это имеет мало отношения к жидкостному дыханию. По-настоящему все началось с 1962 года, когда Иоганн Килстра и его коллеги из Лейденского университета и голландского военно-морского флота опубликовали в журнале ASAIO (American Society of Artificial Internal Organs) Journal знаменитую статью «Мыши как рыбы» (Of mice as fish). В их эксперименте мыши, погруженные в буферный солевой раствор, дышали на протяжении 18 часов, извлекая кислород из жидкости с помощью легких. Правда, тут есть одна важная деталь. Вода при обычном атмосферном давлении и нормальной температуре способна растворить около 3% кислорода по объему, и этого хватает рыбам, но не млекопитающим, которые привыкли к содержанию кислорода около 20% (то есть парциальное давление кислорода составляет 0,2 атм). Мыши находились под давлением в восемь атмосфер, поэтому кислорода им вполне хватало (при большем давлении можно даже не полностью насыщать раствор кислородом). Правда, возврат обратно к дыханию воздухом оказался проблемой - мыши при этом гибли, но именно эта работа дала серьезный толчок научным исследованиям в этой области.

…те, кто говорит: «Дышать солевым раствором нельзя - он смывает сурфактанты!» - в общем-то, совершенно правы.

- Удалось потом установить, почему гибли животные при переходе обратно к дыханию газом?

Основная причина в том, что солевой раствор, даже насыщенный кислородом до нужного уровня под большим давлением, не подходит для долговременного дыхания млекопитающих. Через легкие раствор попадает в сосудистое русло и в кровь, что приводит к гиперволемии - избыточному объему крови и плазмы, а это увеличение нагрузки на сердечно-сосудистую и на множество других систем организма. Кроме того, солевой раствор имеет еще одно крайне неприятное действие. Наши легкие внутри состоят из огромного количества альвеол - микроскопических, в доли миллиметра, структур в форме пузырьков, насыщенных капиллярами. Альвеолы имеют огромную поверхность, и, чтобы они не слипались между собой при выдохе, их покрывает слой поверхностно-активного комплекса белков и фосфолипидов - сурфактанта. Так вот, солевой раствор этот слой смывает! В результате мало откачать солевой раствор - нужно еще восстановить слой сурфактантов и расправить легкие, это отдельные реанимационные мероприятия. Поэтому те, кто говорит: «Дышать солевым раствором нельзя - он смывает сурфактанты!» - в общем-то, совершенно правы. Но вот только в нашей системе жидкостного дыхания солевой раствор не используется.

- А как вы сами занялись жидкостным дыханием?

Я узнал об этом направлении в 1960-х, когда моему отцу, офицеру ВМФ и сотруднику НИИ ВМФ (где в том числе занимались и вопросами подводного флота), предложили дать рецензию на эту идею. Тема была одобрена, и позднее в новосибирском Академгородке я видел мышей, которые дышали солевым раствором. А в 1966 году появилась еще одна историческая статья - «Выживание млекопитающих, дышащих органической жидкостью, насыщенной кислородом при атмосферном давлении» (Survival of Mammals Breathing Organic Liquids Equilibrated with Oxygen at Atmospheric Pressure). В статье американский биохимик и врач Лиланд Кларк показал, что млекопитающие - мыши и кошки - способны длительное время дышать фторуглеродными жидкостями при атмосферном давлении. Можно сказать, что эта статья положила начало всем современным исследованиям, в которых для жидкостного дыхания используются перфторуглероды - углеводороды, в которых все атомы водорода замещены на атомы фтора. Некоторые из таких соединений обладают очень важным свойством - они имеют аномально высокую способность растворять газы, такие как кислород и диоксид углерода. А это как раз одно из основных свойств, которые необходимы для реализации жидкостного дыхания.

То есть при использовании перфторуглеродов проблем с жидкостным дыханием и с возвращением к газовому дыханию нет?

Конечно же есть. Тот же Кларк экспериментировал с силиконовым маслом, которое также растворяет кислород и углекислый газ, но все такие мыши и кошки погибли после возвращения к газовому дыханию. А вот те, которые дышали перфторуглеродом, выживали, хотя и с различными повреждениями легких и осложнениями типа пневмонии. С перфторуглеродами есть свои проблемы. Одна из них - это примеси, которые как раз могут быть причиной многих крайне неприятных эффектов. Другие - это высокие (по сравнению с газами) плотность и вязкость, которые могут затруднять процесс самостоятельного дыхания - все же легкие не рассчитаны на подобную долговременную нагрузку. В первых экспериментах вообще считалось, что самостоятельное дыхание животных больше 20-30 минут невозможно и требуется искусственная механическая вентиляция, то есть жидкость требуется прокачивать сквозь легкие каким-то насосом. Я с этим не вполне согласен, но это, конечно, зависит от контекста: в некоторых ситуациях действительно требуется искусственная вентиляция легких, а в других все же возможно самостоятельное дыхание.

- Например, в каких?

Например, в спасательных аппаратах для подводников. Спасение с глубины сотен метров длится 15-20 минут, это время человек может дышать самостоятельно. Стимулом к началу этих работ стал инцидент с подводной лодкой К-429, которая затонула в 1983 году на Дальнем Востоке. Погибло 16 подводников, и результатом этого стало повышенное внимание ЦК и поручение ученым разработать методы спасения подводников при авариях подлодок. Я в это время уже работал в 40-м НИИ аварийно-спасательного дела, водолазных и глубоководных работ МО СССР в Ломоносове, где занимался перфторуглеродами в качестве кровезаменителей (сейчас из таких соединений наиболее известен «Перфторан», разработанный в Институте биофизики АН СССР) для борьбы с декомпрессионной болезнью. Эти препараты представляют собой эмульсию 10-20% перфторуглеродов в солевом растворе и повышают газотранспортные функции крови. Но прогресс был очень небольшой: сколько бы мы ни переливали перфторуглероды в кровь, как бы они хорошо ни растворяли пузырьки газов, они не могли существенно решить проблему. Поэтому была предложена альтернатива полностью избежать декомпрессионной болезни, используя жидкостное дыхание - перфторуглероды способны растворять кислород в 20 раз лучше, чем вода (до 50% по объему). Это означает, что даже при нормальном давлении теоретически уже можно дышать.

В 40-м НИИ у нас была собака, прожившая после погружения более 10 лет.

- Но ведь кроме кислорода нужно еще выводить углекислый газ?

В перфторуглеродах углекислый газ растворяется еще лучше, чем кислород, - 150-200%. Так что остается только его связать. Это можно сделать с помощью химических веществ типа щелочей (или некоторых других), как это реализовано в дыхательных аппаратах с замкнутым циклом дыхания. Так что эта проблема, в общем-то, чисто технической реализации.

- Так в 1980-х в итоге появилась идея системы жидкостного дыхания?

Ну это примерно как сказать в 1960-х про пилотируемую космическую программу: «Так Гагарин полетел в космос». Я был инициатором работ по жидкостному дыханию, ну, а поскольку инициатива, как известно, наказуема, мне пришлось стать и исполнителем. Когда мы стали экспериментировать с собаками, оказалось, что они самостоятельно способны дышать до получаса, но не дольше (за рубежом были примерно такие же результаты). Оказалось, что мы еще недостаточно хорошо представляли себе процесс дыхания. По тем теориям дыхания, которые существовали в то время, с учетом мощности дыхательных мышц и их утомляемости получалось, что длительное жидкостное дыхание невозможно. Но к этому времени появился принцип высокочастотной вентиляции легких, то есть небольшие объемы с высокой частотой - не единицы или десятки вдохов-выдохов в минуту, а сотни. Этот принцип, кстати, тоже противоречил теориям, но работал! При этом высокочастотная вентиляция требует гораздо меньших усилий, но даже с помощью очень небольшого дыхательного объема все же может обеспечить необходимый газообмен. Наши представления и наши знания о дыхании были несовершенны, и гидродинамические модели и расчеты жидкостного дыхания не соответствовали тому, что я видел в опытах на животных. Кроме того, мы предприняли серьезные усилия по дополнительной очистке жидкости (это был в основном перфтордекалин), и таким методом удалось достичь весьма значительных результатов: собаки дышали самостоятельно, успешно выживали после возврата к газовому дыханию, некоторые жили после этого долгие годы (в 40-м НИИ у нас была собака, прожившая после погружения более 10 лет) и давали здоровое потомство. Если придерживаться нашей методики, собаки выживают и живут после этого долго и ничем не отличаются от других собак. Разве что только тем, что к ним проявляют повышенное внимание.

- А как же смывание сурфактанта и расправление легких?

Еще раз подчеркну: для жидкостного дыхания мы использовали не солевой раствор и даже не «Перфторан», который представляет собой эмульсию и благодаря наличию эмульгатора еще лучше смывает сурфактант. Для дыхания мы использовали перфторуглероды, которые не взаимодействуют с сурфактантами, не растворяют их и не смывают. Поэтому специальных реанимационных мероприятий по расправлению легких не требовалось.

- Как же выглядит система жидкостного дыхания в вашем варианте?

Ну вот представим себе подлодку на грунте на глубине 600 метров. Если спасение происходит самым современным на сегодняшний день, но обычным методом, то есть быстрая компрессия в спасательном люке и потом выход и всплытие «на выдохе», то примерно половина подводников погибает от декомпрессионной болезни. И каждая минута на поверхности до помещения в барокамеру увеличивает эту вероятность. Метод жидкостного дыхания предусматривает другой алгоритм действий. Подводник должен быть хорошо обучен, и физически, и психологически готов к нему. Итак, подготовленный человек заходит в спасательный люк. На нем резиновый раздувающийся гидрокомбинезон, который способен сверху создать достаточно большой объем, - баллон, который сможет его вытащить на поверхность (это, кстати, проблема: чем глубже, тем большее нужно давление, чтобы его надуть). Включение в аппарат начинается с того, что нам нужно подавить кашель, - ингаляционным способом вводится специальное вещество в дозе, необходимой для конкретного человека. Это может быть внешний ингалятор или встроенный в аппарат. Человек всего лишь должен не кашлять, не должно быть смыкания голосовой щели (есть еще один, более сложный вариант - с постановкой ингаляционной трубки). Человек должен быть в этот момент спокоен, не должен паниковать. После этого начинаем заливать фторуглеродную жидкость, насыщенную кислородом, и после того, как легкие заполнятся, делаем компрессию - заливаем отсек водой и выравниваем давление. Потом открываем внешний люк и баллон тянет человека наверх. При таком всплытии изменения объема легких не происходит и насыщения тканей организма азотом тоже, то есть вообще нет никакой декомпрессионной болезни. Там, конечно, есть много проблем. Например, переохлаждение и дыхание холодной жидкостью (хотя в аппарате предусмотрен подогрев) могут привести к пневмонии. Но дело в том, что на поверхности мы умеем лечить пневмонию, а вот если подводник останется на дне, мы ничем не сможем ему помочь.

Сейчас мы подошли к тому, чтобы перейти к экспериментам на человеке. Техника за 30 лет ушла далеко вперед.

Сейчас мы подошли к тому, чтобы перейти к экспериментам на человеке. Техника за 30 лет ушла далеко вперед, появилось большое количество технологий, которые сильно облегчают исследования, - скажем, малогабаритные и очень информативные системы мониторинга различных медицинских показателей. С их помощью можно очень много узнать о жидкостном дыхании человека, достаточно быстро довести систему до рабочей эксплуатации - и спасти множество жизней, и сильно продвинуть науку.

- Существуют ли для жидкостного дыхания принципиальные ограничения на глубину?

Изначально нам поставили задачу спасения с глубины 350 м, обеспечив дыхание на протяжении 15 минут. Это достаточно реальная задача, сильно повышающая шансы выжить для терпящих бедствие подводников. В итоге мы «погружали» собак в барокамере до 700 м и успешно «спасали» их, вдвое превысив заданную глубину. А в 2015 году мы провели морские испытания системы на собаках на Черном море, правда, на небольшой глубине в 15 м, но зато в совершенно реальной обстановке (собака нормально дышала головой вниз и на глубине, и потом на поверхности, хотя и сильно переохладилась за время жидкостного дыхания).

Джеймс Кэмерон в фильме «Бездна» 1989 года показал глубоководный скафандр с системой жидкостного дыхания, но, как вы понимаете, он это не сам придумал: к этому времени у нас собаки «погружались» в барокамерах и дышали самостоятельно. За рубежом, кстати, такого делать в то время не умели - только с искусственной вентиляцией легких. А в фильме главный герой дышит самостоятельно!

Для использования такой системы в качестве глубоководного рабочего скафандра нужно решить много технических проблем, в частности с запасом кислорода, с подогревом, с сервопомощью дыханию, а также неприятными эффектами типа нервного синдрома высоких давлений (НСВД) - помните, в фильме Кэмерона у главного отрицательного героя был тремор и нервный срыв? Но на самом деле НСВД, возможно, связан именно с дыханием газами, а не воздействием давления. В зарубежных экспериментах мыши погружались на глубину более 2 км, и никакого НСВД у них не наблюдалось. В любом случае, эта область науки пока недостаточно изучена, чтобы можно было делать выводы, но я лично считаю, что мы сможем противодействовать НСВД тем или иным образом (скажем, введением каких-либо лекарственных препаратов или небольшого количества газов типа азота в дыхательную жидкость). Других принципиальных ограничений на глубину работы системы я не вижу. Было бы интересно сделать скафандр, в котором можно погрузиться в Марианскую впадину. Кстати, ко мне уже есть такой запрос…

Медицинская гибернация

Управляемая (искусственная) гипотермия применяется в медицине в двух разновидностях: общей и местной.

Ы Вёрстка Таблица

Область применения

Выполнение операций в условиях значительного снижения или даже временного прекращения кровообращения. Это получило название операций на так называемых «сухих» органах: сердце, мозге и некоторых других.

Наиболее широко общая искусственная гибернация используется при операциях на сердце для устранения дефектов его клапанов и стенок, а также на крупных сосудах, что требует остановки кровотока.

Преимущества

Существенное возрастание устойчивости и выживаемости клеток и тканей в условиях гипоксии при сниженной температуре. Это даёт возможность отключить орган от кровоснабжения на несколько минут с последующим восстановлением его жизнедеятельности и адекватного функционирования.

Диапазон температуры

Обычно используют гипотермию со снижением ректальной температуры до 30–28 °C. При необходимости длительных манипуляций создают более глубокую гипотермию с использованием аппарата искусственного кровообращения, миорелаксантов, ингибиторов метаболизма и других воздействий. При проведении продолжительных операций (несколько десятков минут) на «сухих» органах выполняют «глубокую» гипотермию (ниже 28 °C), применяют аппараты искусственного кровообращения и дыхания, а также специальные схемы введения ЛС и средств для наркоза.

Наиболее часто для общего охлаждения организма применяют жидкость с температурой +2–12 °C, циркулирующую в специальных «холодовых» костюмах, одеваемых на пациентов или в «холодовых» одеялах, которыми их укрывают. Дополнительно используют также ёмкости со льдом и воздушное охлаждение кожных покровов пациента.

Медикаментозная подготовка

С целью устранения или снижения выраженности адаптивных реакций организма в ответ на снижение его температуры, а также для выключения стресс‑реакции непосредственно перед началом охлаждения пациенту дают общий наркоз, вводят нейроплегические вещества, миорелаксанты в различных комбинациях и дозах. В совокупности указанные воздействия обеспечивают значительное снижение обмена веществ в клетках, потребления ими кислорода, образования углекислоты и метаболитов, предотвращают нарушения КЩР, дисбаланса ионов и воды в тканях.

Эффекты медицинской гибернации

При гипотермии 30–28 °C (в прямой кишке)

не наблюдается жизненно опасных изменений функции коры головного мозга и рефлекторной деятельности нервной системы;

снижается возбудимость, проводимость и автоматизм миокарда;

развивается синусовая брадикардия,

уменьшаются ударный и минутный выбросы сердца,

понижается АД,

снижается функциональная активность и уровень метаболизма в органах и тканях.

Гипотермия различной степени выраженности возникает более чем у половины пациентов во время хирургических операций. За рубежом применяется термин inadvertent hypothermia, означающий «неумышленная» или «непреднамеренная гипотермия».

Непреднамеренная гипотермия приводит к развитию многих осложнений, возникающих как непосредственно во время гипотермии, так и в период восстановления нормальной терморегуляции.

Под периоперационной гипотермией понимают снижение температуры ядра тела пациента ниже 36 °С в период предоперационного периода (1 час перед проведением анестезии) и в послеоперационном периоде (первые 24 часа после проведения анестезии).

Периоперационная (непреднамеренная) гипотермия в отличие от терапевтической (лечебной, искусственной) гипотермии развивается спонтанно, как следствие хирургического вмешательства и анестезии в результате нарушения соответствия теплопродукции теплопотерям и подавления компенсаторного ответа.

Факторы, определяющие потерю тепла в периоперационном периоде

Потеря тепла прямо зависит от возраста, пола, площади поверхности тела, вида и длительности оперативного вмешательства, температуры в помещении и длительности искусственной вентиляции легких (ИВЛ).

В физиологических условиях холодовой ответ срабатывает при температуре < 36,5 °С, а тепловой ответ - при температуре > 37,5 °С (порог вазодилатации, потоотделения и последующего изменения поведения). Температура комфорта организма, обеспечивающая его нормальное функционирование, находится в диапазоне 36,5-37,5 °С, называется межпороговым промежутком и характеризуется отсутствием ответа систем терморегуляции.

В норме снижение температуры тела активирует гипоталамические механизмы терморегуляции, обеспечивающие вначале вазоконстрикцию, снижающую потерю тепла организмом, а затем развитие холодовой дрожи (сократительный термогенез) - теплопродукцию.

Вазомоторный ответ возникает при отклонении значения температуры ядра от установочной точки (порог вазоконстрикции 36,5 °С). В результате активации симпатической нервной системы гипотермия приводит к сосудистому спазму, что сказывается на температуре тканей оболочки, но не за счет изменения их теплопроводности, а благодаря изменению кровотока. Следовательно, меняется интенсивность обмена теплом с окружающей средой.

При увеличении общего периферического сосудистого сопротивления происходит смещение условной границы между ядром и оболочкой вглубь тела для минимизации потери тепла. Одновременно с изменением массы относительно теплых и холодных отсеков та же симпатическая нервная система активирует метаболическую продукцию тепла. Это происходит за счет стимуляции окислительного метаболизма митохондрий.

Потребление кислорода тканями возрастает пропорционально. Причем гипотермия создает крайне неблагоприятные условия для функционирования сердечно-сосудистой системы. Прямое кардиодепрессивное действие, высокая постнагрузка из-за вазоконстрикции и необходимость резкого увеличения доставки кислорода при росте его потребления в случае исходной патологии могут приводить к серьезным осложнениям.

При дальнейшем снижении температуры, достигающем уровня ниже 35,5 °С (порог холодовой дрожи), активируется сократительный термогенез, который обеспечивается работой поперечнополосатой мускулатуры, вырабатывающей теплопродукцию с целью стабилизации температурного гомеостаза.

Общая анестезия

Внутривенные и ингаляционные анестетики подавляют терморегулирующую функцию гипоталамуса, смещая порог ответных терморегуляторных реакций на снижение температуры тела, то есть человек теряет свойства гомойотермного организма за счет нарушения механизмов терморегуляции, и температура тела начинает определяться температурой внешней среды.

Под воздействием анестетиков межпороговый промежуток расширяется до диапазона 34,5-39,5 °С, и таким образом снижается чувствительность механизмов терморегуляции к изменению температуры.

В ходе общей анестезии снижение продукции тепла происходит из-за подавления и факультативной (то есть подверженной влиянию механизмов терморегуляции), и базальной теплопродукции (связанной с метаболизмом организма).

При проведении общей анестезии, особенно при использовании миорелаксантов, факультативная теплопродукция стремится к нулю из-за выключения целенаправленных движений и тонуса скелетной мускулатуры.

Регионарная анестезия

Вазодилатация также наблюдается при симпатической блокаде, вызванной нейроаксиальной анестезией. Регионарная анестезия, несмотря на возможность сохранения сознания пациента, вызывает развитие периоперационной гипотермии, вмешиваясь в регуляторные и эффекторные звенья терморегуляции.

Это объясняется снижением тонической импульсации периферических холодовых рецепторов в зоне анестезии, в результате чего гипоталамус воспринимает вовлеченную в нейроаксиальный блок область тела значительно более теплой, чем есть в действительности, что не только усиливает теплоотдачу в этой области, но и частично подавляет системный терморегуляторный ответ, который развивается из-за снижения температуры тканей, не входящих в анестезированную зону.

Происходит значительная потеря тепла из-за отсутствия гипотермической вазоконстрикции в области симпатического блока. С течением времени гипотермия усиливается, поскольку потеря тепла продолжается, а центр терморегуляции по-прежнему неверно оценивает температуру зоны нейроаксиального блока.

Значительный вклад в развитие гипотермии в условиях регионарной анестезии вносит нарушение сократительного компонента термогенеза за счет исключения больших групп мышц. Для увеличения теплопродукции в терморегуляторную дрожь могут быть включены только мышцы, расположенные выше уровня блока. Как правило, она малоэффективна из-за небольшой массы вовлеченной мускулатуры.

Необходимо подчеркнуть, что комбинация общей анестезии и нейроаксиальной анестезии может привести к развитию глубокой интраоперационной гипотермии (34,5 °С), так как синергизм действия обоих видов анестезиологического пособия снижает порог вазоконстрикции на 1 °С ниже, чем при проведении только одной общей анестезии.

При этом виде анестезии защитная гипотермическая вазоконстрикция возникает при более низких значениях центральной температуры. Препараты для общей анестезии угнетают центр терморегуляции, и происходит погашение периферической импульсации, что не отражает действительное распределение в организме тепла.

В дальнейшем гипотермическая вазоконстрикция возникает только в участках, не входящих в зону регионарной анестезии, и последующая потеря тепла не может быть предотвращена эффективно. В отличие от случаев изолированной регионарной анестезии уменьшение выраженности гипотермии невозможно при сочетанной, поскольку мышцы выше уровня блока не могут участвовать в сократительном термогенезе из-за гипнотического компонента.

Фазы развития периоперационной гипотермии

Фаза 1 - снижение температуры ядра тела пациента на 05,-1 °С в первые 60 минут за счет перераспределения тепла.

Многие общие анестетики являются вазодилататорами, и их применение увеличивает потери тепла через кожу примерно на 5 %. Наркоз также снижает теплопродукцию примерно на 20-30 %. Также доказано, что это снижение температуры является результатом перераспределения тепла между ядром и периферией в условиях тотальной вазодилатации.

Гипотермия за счет перераспределения более выражена, когда перед операцией больной находится в прохладной среде и его кожа охлаждается. Градиент температуры между ядром и периферией может составлять от практически незначимого до 4 °С. Степень гипотермии за счет перераспределения будет пропорциональна длительности нахождения в прохладном помещении и степени вазоконстрикции. Согревание кожи перед операцией может предупреждать такую гипотермию.

Интересно, что гипотермия за счет перераспределения минимальна у тучных больных, так как у них всегда есть определенная степень вазодилатации для поддержания теплового баланса. Перераспределение также не играет существенной роли у маленьких детей. Их конечности относительно малы и поэтому практически все тело является ядром.

Фаза 2 - теплопотеря за счет перераспределения тепла из ядра тела на периферию, приводящая к снижению температуры ядра тела до 35 °С на протяжении от 2 до 4 часов анестезии.

Потери тепла зависят от разницы температуры кожи и ближайших поверхностей (стены операционной). Радиация является основным путем теплопотерь в операционной (более 60 % всех потерь). Потоотделением и испарением с поверхности кожи во время анестезии можно пренебречь в качестве существенного механизма потерь тепла.

И наоборот - обработка операционной раны холодными растворами с последующим быстрым их испарением является уже существенным фактором. Также испарение с поверхности брюшины или плевры при открытых полостях является огромным источником теплопотерь и усиливается применением холодных растворов для ирригации. Вышесказанное подтверждается тем, что пациенты после обширных оперативных вмешательств имеют большую степень гипотермии.

Потери через легкие и дыхательные пути составляют не более 10-15 % общих потерь, но могут увеличиваться при использовании больших потоков холодной и сухой дыхательной смеси. Потери за счет кондукции (теплообмен между поверхностями) и конвекции (охлаждение движущимся воздухом) во время операции не являются существенными.

Толщина подкожного жирового слоя не имеет значения для степени охлаждения. Вазодилатация за счет анестезии достигает максимальных значений, и тепло легко перераспределяется от ядра к периферии независимо от массы тела.

Фаза 3 - срабатывание механизмов периферической вазоконстрикции, которая обусловливает стабилизацию температуры ядра тела при достижении температуры 33-35 °С (фаза плато), что характерно для периода 3-4 часа проведения анестезии.

Конечная стадия интраоперационной гипотермии, характеризующаяся сглаживанием кривой снижения температуры в результате вновь возникшей вазоконстрикции. За счет вазоконстрикции вновь возникает периферия, которая служит своеобразным изолятором, сохраняющим метаболическое тепло ядра. Это сводит к минимуму дальнейшие потери тепла, если не производится инфузия охлажденных растворов.

Физиологическими эффектами периоперационной гипотермии являются: развитие дрожи, гипертензии, тахикардии, тахипноэ, вазоконстрикции, холодового диуреза, нарушения сознания, гипергликемии, печеночной дисфункции, появления «гусиной кожи».

Осложнения, связанные с периоперационной гипотермией

  • Пролонгация длительности действия анестетиков и миорелаксантов, что удлиняет период депрессии дыхания (увеличение длительности проведения ИВЛ в послеоперационном периоде) и пробуждения после окончания оперативного вмешательства.
  • Увеличение объема интраоперационной кровопотери (за счет развития коагулопатии, нарушающей формирование сгустка, дисфункции тромбоцитов, снижения активации коагуляционного каскада системы гемостаза) и, как следствие, увеличение потребности в трансфузии компонентов аллогенной крови.
  • Осложнения со стороны сердечно-сосудистой системы, вплоть до фатальных последствий.
  • Удлинение периода восстановления после проведения анестезии.
  • Развитие холодовой дрожи в послеоперационном периоде, ассоциированной с развитием дискомфорта у пациентов, а также увеличение потребления кислорода.
  • Повышение риска развития раневой инфекции в послеоперационном периоде за счет прямого угнетения иммунной функции и снижения кровотока кожи, что приводит к уменьшению доставки кислорода тканям и снижению проникновения антибиотика, используемого с целью антибиотикопрофилактики.
  • Снижение заживления послеоперационных ран вследствие повышенного расхода альбуминов и подавления синтеза коллагена.
  • Повышение частоты развития тошноты и рвоты в послеоперационном периоде.
  • Удлинение сроков пребывания в стационаре и увеличение стоимости лечения.

Так, при снижении температуры тела более чем на 2 °С ишемия миокарда в послеоперационном периоде возникает чаще, чем у нормотермических пациентов. Одной из причин является увеличение уровня катехоламинов почти в три раза и увеличение общего периферического сопротивления сосудов.

При снижении температуры тела, даже умеренном, нарушаются фармакокинетика и фармакодинамика лекарственных препаратов, в том числе анестетиков. Это происходит за счет снижения кровотока в печени, почках, а также нарушения работы ферментных систем. Замедленный выход из наркоза характеризуется не только увеличением времени госпитализации, но также продлением того периода, когда возможно возникновение обструкции дыхательных путей и гемодинамических нарушений.

Наиболее распространенным осложнением является развитие послеоперационной холодовой дрожи. У молодых мускулистых пациентов дрожь может быть настолько выраженной, что даже приводит к нарушению целостности ран и ушибам.

Дрожь возникает примерно у 40 % послеоперационных больных. При этом за счет увеличения уровня метаболизма в 2-3 раза увеличивается продукция тепла. Потребление кислорода растет до 400 %. При недостаточной доставке (например, невозможность увеличения сердечного выброса, обструкция дыхательных путей и т.д.) возможно развитие метаболического ацидоза.

При этом необходимо подчеркнуть, что дрожь является нормальной физиологической реакцией, поэтому для ее профилактики прежде всего необходимо предотвратить охлаждение пациентов в операционной. Наиболее эффективным методом профилактики является согревание поверхности кожи (поскольку именно отсюда идет в центральную нервную систему основной поток афферентных импульсов) конвекционным методом.

Гипотермия является важнейшим фактором, влияющим на интраоперационную кровопотерю, обусловливая развитие гипокоагуляции, поэтому даже незначительная гипотермия может существенно увеличить кровопотерю. При гипотермии отмечается угнетение как клеточного, так и плазменного звеньев системы гемостаза.

Так, при температуре 35 °С отмечается дисфункция адгезивных и агрегационных свойств тромбоцитов, а при температуре 33 °С - уменьшение числа тромбоцитов за счет их секвестрации в печени и селезенке. Также возрастает протромбиновое время.

Интраоперационное снижение температуры тела на 1,6 °С увеличивает объем кровопотери на 500 мл (30 %) и достоверно увеличивает потребность в трансфузии аллогенной крови. В целом при гипотермии, ассоциированной с кровопотерей, отмечается переключение клеточного метаболизма с аэробного на гликолиз, конечной точкой которого являются накопление лактата и развитие метаболического ацидоза, активация провоспалительных каскадов и апоптоза.

Выделяют следующие группы пациентов, у которых имеет место высокий риск развития периоперационной гипотермии:

  • Операционно-наркозный риск по ASA II-V (чем выше класс, тем выше риск развития гипотермии).
  • Пациенты с температурой тела ниже 36 °С в предоперационном периоде (в основном при проведении ургентных оперативных вмешательств).
  • Пациенты, которым планируются большие или средние по объему оперативные вмешательства.
  • Пациенты с сопутствующей сердечно-сосудистой патологией.
  • Пациенты, которым планируется комбинация регионарной и общей анестезии.
  • Пациенты в возрасте более 70 лет.
  • Пациенты с систолическим артериальным давлением выше 140 мм рт.ст.
  • Пациенты в предоперационном периоде с заболеваниями периферических сосудов, эндокринными заболеваниями, кахексией, ожогами, наличием открытых ран, беременные.

Интраоперационный мониторинг температуры

При этом нужно подчеркнуть, что температурный мониторинг необходимо использовать у пациентов при проведении оперативных вмешательств длительностью более 30 минут. Следует использовать датчики для измерения аксиллярной (на поверхности кожи), эзофагеальной или тимпанитной температуры.

Методы профилактики и лечения периоперационной гипотермии

Преимущественно тепло теряется через кожу, однако при длительных полостных оперативных вмешательствах имеет место значительная потеря тепла испарением. Активное согревание кожи может в значительной степени предотвратить теплопотери с кожных покровов, а также уменьшить степень переноса тепла от центральных тканей в сторону периферии.

Использование покрывал с активным воздухообменом (конвекционные системы) является наиболее эффективным методом профилактики теплопотери с кожных покровов.

Выделены особенности контроля температурного гомеостаза на двух этапах периоперационного периода.

Предоперационный период

Важным является начало согревания пациента в предоперационном периоде, позволяющее снизить различие между температурой ядра тела и периферической температурой, упреждая таким образом внутреннее перераспределение тепла.

Пациентам, которым планируется проведение оперативного вмешательства под общим обезболиванием, необходимо обеспечить согревание на протяжении 20 минут или, как минимум, в течение 10 минут до начала операции.

Вышеизложенное положение особенно критично при проведении ургентных операций, поэтому в случае, если это допустимо (в отсутствие необходимости экстренного оперативного вмешательства по поводу активного кровотечения), необходимо начать согревание до момента индукции в наркоз всем пациентам, имеющим температуру тела ниже 36 °С, с последующим продолжением согревания в условиях операционной.

Интраоперационный период

Если пациент попадает в группу высокого риска развития периоперационной гипотермии, необходимо подключить температурный датчик на кардиомониторе или измерить температуру другим доступным методом.

Пациентам, имеющим температуру тела ниже 36 °С, в случае, если позволяет клиническая ситуация, необходимо начать согревание до момента индукции в анестезию.

Если планируется инфузия кристаллоидных и коллоидных растворов, а также трансфузия компонентов аллогенной крови в объеме более 1000 мл, необходимо обеспечить подогрев растворов (при помощи специальных обогревателей и/или термостата для хранения кристаллоидных растворов) до температуры 37 °С.

Активное согревание должно быть прекращено при достижении температуры тела > 36,5 °С.

Послеоперационный период

При поступлении пациента из операционной в ОРИТ необходимо незамедлительно измерить температуру его тела.

Пациенты, которые на момент поступления в ОРИТ из операционной имеют температуру тела > 36 °С, должны согреваться пассивно.

Активное согревание должно быть прекращено при достижении температуры тела > 36,5 °С.

Таким образом, недооценка влияния периоперационной гипотермии на течение и исход послеоперационного периода при проведении как плановых, так и ургентных оперативных вмешательств приводит к повышению уровня осложнений, удорожанию и длительности лечения пациентов.

Использование методов контроля потерь тепла, а также конвекционных систем обогрева в периоперационном периоде обеспечивает повышение безопасности анестезиологического пособия и эффективность интенсивной терапии.

Царев А.В., Мынка В.Ю., Кобеляцкий Ю.Ю.

Терапевтическая гипотермия


Умеренная терапевтическая гипотермия – контролируемое индуцируемое снижение центральной температуры тела у больного до 32- 34°С , с целью снижению риска ишемического повреждения тканей головного мозга после периода нарушения кровообращения .

Доказано, что гипотермия оказывает выраженный нейропротективный эффект. В настоящий момент терапевтическая гипотермия рассматривается как основной физический метод нейропротекторной защиты головного мозга, поскольку не существует ни одного, с позиций доказательной медицины, метода фармакологической нейропротекции.

Терапевтическая гипотермия входит в стандарты лечения:

  • Международного Комитета Взаимодействия по Реанимации (ILCOR)
  • Американской Ассоциации Кардиологов (AHA)
  • Ассоциации Нейрохирургов России

Применение умеренной терапевтическая гипотермии, для снижения рисков возникновения необратимых изменений в мозге, рекомендуется при следующих патологических состояниях:

1. Энцефалопатии новорожденных

2. Остановка сердца

3. Инсульты

4. Травматических поражений головного или спинного мозга без лихорадки

5. Травмы головного мозга с нейрогенной лихорадкой

Методология терапевтической гипотермии

Перед началом лечения гипотермией следует ввести фармакологические средства для контроля дрожи.

Температура тела больного снижается до 32- 34°С градусов и поддерживается на таком уровне 24 часа. Врачи должны избегать уменьшения температуры ниже целевого значения. Принятые медицинские стандарты устанавливают, что температура пациента не должна падать ниже порога в 32 °C .

Затем температуру тела постепенно поднимают до нормального уровня в течение 12 часов, под контролем компьютера блока управления системы охлаждения / согревания. Согревание пациента должно происходить со скоростью не менее 0,2-0,3°С в час, чтобы избежать осложнений, а именно: аритмии, снижения порога коагуляции, повышения риска инфекции и увеличения риска нарушения баланса электролитов.

Методы осуществления терапевтической гипотермии :

  • Инвазивный метод

Охлаждение осуществляют через катетер введенный в бедренную вену. Жидкость, циркулирующая в катетере, выводит тепло наружу, не попадая в пациента. Метод позволяет контролировать скорость охлаждения, устанавливатьтемпературу тела в пределах1 °C от целевого значения.

Проводить процедуру должен только хорошо подготовленный и владеющий методикой врач.

Основным недостатком методики являются серьезные осложнения - кровотечения, тромбоз глубоких вен, инфекции, коагулопатии.

  • Неинвазивный метод

Для неинвазивного метода терапевтической гипотермии сегодня используются специализированныеаппараты, состоящие из блока системы охлаждения / согревания на водной основе и теплообменного одеяла. Вода циркулирует через специальное теплообменное одеялоили облегающий жилет на торсе с аппликаторами на ноги. Для снижения температуры с оптимальной скоростью необходимо покрыть теплообменными одеялами не менее 70 %площади поверхности тела пациента. Для локального снижения температуры мозга используют специальный шлем.

Современные системы охлаждения / согревания с микропроцессорным контролем и обратной связью с пациентом, обеспечивают создание управляемой терапевтической гипо / гипертермии. Прибор контролирует температуру тела пациента с помощью датчика внутренней температуры и корригирует ее, в зависимости от заданных целевых значений, изменяя температуру воды в системе.

Принцип обратной связи с пациентом обеспечивает высокую точность достижения и контроля температуры в первую очередь тела пациента, как во время охлаждения, так и во время последующего согревания. Это важно для минимизации побочных эффектов связанных с гипотермией.

Система гипо-гипертермии пациента BLANKETROL (CSZ, USA)

Протокол управляемой гипотермии в неонатологии

Практика в США

Практика в Великобритании

Протокол терапевтической гипотермии при неонатальной г ипоксическ ишемической энцефалопати и (ГИЭ)

Показатели заболеваемости и смертности новорожденных являются одними из важнейших критериев уровня состояния здравоохранения. В качестве наиболее частого патологического состояния неонатального периода диагностируется гипоксически-ишемическая энцефалопатия (ГИЭ) – 47% , или гипоксическое поражение ЦНС. По данным различных авторов, она может выявляться у 6-8% новорожденных.

Гипоксически-ишемическая энцефалопатия (ГИЭ) у доношенных новорожденных, возникающая вследствие острой перинатальной асфиксии, является важной причиной последующих нарушений их нервно-психического развития. Риск смертельного исхода у младенцев с умеренной ГИЭП составляет 10%, а у выживших детей в 30% случаев выявляются нарушения нервно-психического развития. При тяжелой ГИЭП 60% младенцев умирают и практически все выжившие дети становятся инвалидами.

Клинические синдромы, ассоциированные с перинатальной гипоксией, зависят от периода ГИЭ: к синдромам острого периода относятся повышенная нейрорефлекторная возбудимость, синдромы общего угнетения центральной нервной системы, вегетовисцеральных дисфункций, гидроцефально-гипертензионный, судорожный, коматозное состояние; в структуру восстановительного периода ГИЭ входят синдромы задержки речевого, психического, моторного развития, гипертензионно-гидроцефальный, вегетовисцеральной дисфункции, гиперкинетический, эпилептический, церебрастенический. Некоторые авторы в восстановительном периоде выделяют синдромы двигательных нарушений, повышенной нервно-рефлекторной возбудимости.

К. Nelson и соавт. в своих работах отметили, что у детей, имеющих оценку по шкале Апгар менее 3 на 10, 15, 20-й минутах и выживших, чаще, чем у детей с более высокой оценкой, наблюдались детский церебральный паралич, задержка психомоторного развития, судороги. Прогностические признаки зависят от тяжести клинических проявлений. Смертность новорожденных при перинатальном поражении ЦНС гипоксической природы составляет 11,5 % (среди детей с умеренными церебральными нарушениями - 2,5 %, тяжелыми - 50 %). У детей с легким течением гипоксически-ишемической энцефалопатии в неонатальном периоде осложнений не возникает. По данным М.І. Levene , у 80 % доношенных новорожденных тяжелые ГИП ЦНС приводят к смерти или тяжелым неврологическим нарушениям.

В оздействия на мозг ребенка повреждающего фактора (травма, кислородное голодание и т. д.) начинается острый период энцефалопатии, который длится 3-4 недели. Именно в остром периоде необходима активная терапия, которая способна серьезным образом повлиять на исход болезни.

Известно, что общая гипотермия (ОГ) в момент реанимационных мероприятий уменьшает частоту летальных исходов, и умеренных и серьёзных нарушений психомоторного развития у новорождённых с гипоксически-ишемической энцефалопатией (ГИЭ) вследствие острой перинатальной асфиксии. Это подтверждено на целом ряде мультицентровых исследований в США и Европе. Более того селективное охлаждение головы вскоре после рождения может применяться для лечения детей с перинатальной энцефалопатией средней и легкой степеней тяжести для предотвращения развития тяжелой неврологической патологии. Селективное охлаждение головы малоэффективно при тяжелой энцефалопатии.

Проведение гипотермии при лечении ГИЭ сочетается с меньшим поражением серого и белого вещества головного мозга. У большего числа детей, которым проводится гипотермия, отсутствуют изменения при ЯМР (Rutherford M., et al. Assessment of brain tissue injury after moderate hypothermia in neonates with hypoxic–ischaemic encephalopathy: a nested substudy of a randomised controlled trial. Lancet Neurology, November 6, 2009).

«Накопление доказательств поддерживает преимущества нейропротективной терапевтической гипотермии у доношенных новорожденных с гипоксически-ишемической энцефалопатией» (Сьюзен Е. Джакобс (Susan E. Jacobs) (Neonatal Services, Royal Women"s Hospital, Victoria, Australia) .

Гипотермия всего тела состоит из обеспечения новорожденному целевой температуры 33,5°C в течение 72 часов.

Терапевтическая гипотермия, как было обнаружено, уменьшала риск смерти или главной сенсоневральной инвалидности в возрасте 2 года

Отмечаются только минимальные отрицательные воздействия гипотермии. У младенцев с гипотермией был удлинен интервал QT, по сравнению с младенцами контроля, но никакой аритмии, требующей лечения или прекращения гипотермии, не наблюдается.

«Пятнадцатипроцентное сокращение сложного первичного исхода - смерти или главной сенсоневральной инвалидности является и статистически существенным и клинически важным»

Итогом работы специалистов, стало создание ряда клинических протоколов США и Великобритании. В настоящее время этот метод также принят неонатологами Австралии.

В соответствии с национальными мультицентровыми исследованиями в которых участвовали ведущие клиники США (500 новорожденых, система Blanketrol ® II , СSZ), Американская Академия Педиатрии (AAP ) вынесла резолюцию в 2005 году о необходимости использования гипотермии при ГИЭ в неонатальном периоде для снижения неврологических осложнений в более позднем возрасте.

В 2007 году врачами Детского Госпиталя в Бостоне разработан Национальный протокол с применением одеял устройства Blanketrol ® II Hypo ‐ Hyperthermia System , при котором новорожденный охлаждался до 33.5° C (92.3°F ) в течение 72 часов с последующим плавным повышением температуры до нормальной. В разработке Национального протокола США участвовала Медицинский директор и профессор педиатрии Гарвардской медицинской школы Анна Хансен (Anne Hansen , MD , MPH ).

Результаты аналогичной работы в клиниках Европы отражены в мультицентровом исследовании TOBY (Национальный Институт Стандартов в здравоохранении Великобритании), которые легли в основу Клинического протокола Великобритании. В исследовании участвовали клиники Великобритании, Швеции, Израиля, Финляндии. Подробнее о данном протоколе вы можете ознакомиться по ссылке http://www.npeu.ox.ac.uk/toby

Терапевтическая гипотермия сегодня – Национальный стандарт лечения для соответствующих групп риска новорожденных и утвержден Британской Ассоциацией Перинатальной медицины.

«Библиотека репродуктивного здоровья ВОЗ» (БРЗ) Департамента репродуктивного здоровья и исследований штаб - квартиры ВОЗ в Женеве (Швейцария) опубликовала следующий обзор: «Охлаждение новорожденных с гипоксической ишемической энцефалопатией», в котором отмечено, что терапевтическая гипотермия у родившихся в срок новорожденных с гипоксической ишемической энцефалопатией оказывается эффективной. Л.В. Усенко
Член Европейского Совета по реанимации
А.В. Царев