Экспертный метод. Методы экспертных оценок

Проблема подбора экспертов является одной из наиболее сложных в теории и практике экспертных исследований. Очевидно, в качестве экспертов необходимо использовать тех людей, чьи суждения наиболее помогут принятию адекватного решения. Но как выделить, найти, подобрать таких людей? Надо прямо сказать, что в настоящее время и в обозримом будущем не будет методов подбора экспертов, наверняка обеспечивающих успех экспертизы. Сейчас мы не будем возвращаться к обсуждению проблемы существования различных "партий" среди экспертов и обратим внимание на иные стороны процедур подбора экспертов.

В проблеме подбора экспертов можно выделить две составляющие - 1)составление списка возможных экспертов и 2) выбор из них экспертной комиссии в соответствии с компетентностью кандидатов .

Составление списка возможных экспертов облегчается тогда, когда рассматриваемый вид экспертизы проводится многократно. В таких ситуациях обычно ведется реестр возможных экспертов, например, в области государственной экологической экспертизы или судейства фигурного катания. Из обширного реестра можно выбирать по различным критериям или с помощью датчика псевдослучайных чисел .

Как быть, если экспертиза проводится впервые, а потому устоявшиеся списки возможных экспертов отсутствуют? Однако и в этом случае у каждого конкретного специалиста есть некоторое представление о том, что требуется от эксперта в подобной ситуации. Для формирования списка есть полезный метод "снежного кома", при котором от каждого специалиста, привлекаемого в качестве эксперта, получают несколько (например, пять) фамилий тех, кто может быть экспертом по рассматриваемой тематике. Очевидно, некоторые из этих фамилий встречались ранее и зафиксированы в списках РГ, а некоторые - новые. Каждого вновь появившегося опрашивают по той же схеме. Процесс расширения списка останавливается, когда список экспертов расширяется до нужных размеров или когда новые фамилии практически перестают встречаться. В результате получается достаточно обширный список возможных экспертов. Метод "снежного кома" имеет и недостатки. Число туров до остановки процесса наращивания "снежного кома" нельзя заранее предсказать, а потому нельзя предварительно установить продолжительность и стоимость этой работы. Кроме того, ясно, что если на первом этапе все эксперты были из одного "клана", придерживались в чем-то близких взглядов или занимались сходной деятельностью, то и метод "снежного кома" даст, скорее всего, прежде всего лиц из этого "клана". Мнения и аргументы других "кланов" будут упущены.

Вопрос об оценке компетентности экспертов не менее сложен. Успешность участия в предыдущих экспертизах - хороший критерий для деятельности дегустатора, врача, судьи в спортивных соревнованиях, т.е. таких экспертов, которые участвуют в длинных сериях однотипных экспертиз. Однако, увы, наиболее интересны и важны уникальные экспертизы больших проектов, не имеющих аналогов. Использование формальных показателей экспертов (должность, ученые степень и звание, стаж, число публикаций, награды, ...), очевидно, в современных условиях может носить лишь вспомогательный характер, хотя подобные показатели проще всего применять при формировании экспертной комиссии.

Часто предлагают использовать методы самооценки и взаимооценки компетентности экспертов. Обсудим их, начав с метода самооценки, при котором эксперт сам дает информацию о том, в каких областях он компетентен, а в каких - нет. С одной стороны, кто лучше может знать возможности эксперта, чем он сам? С другой стороны, при самооценке компетентности скорее оценивается степень самоуверенности эксперта, чем его реальная компетентность. Тем более, что само понятие "компетентность" строго не определено. Можно его уточнять, выделяя составляющие, но при этом усложняется предварительная часть деятельности экспертной комиссии. Достаточно часто эксперт преувеличивает свою реальную компетентность. Например, большинство людей считают, что они хорошо разбираются в политике, экономике, проблемах образования и воспитания, семьи и медицины. На самом деле экспертов (и даже знающих людей) в этих областях не так уж много, особено в сравнении с претензиями профанов. Бывают уклонения и в другую сторону, излишне критичное отношение к своим возможностям. При этом специалист вполне сознательно искусственно сужает зону своей компетенции. Так, научный работник может заявить, что он компетентен только в том, чему посвящены его последние публикации.

При использовании метода взаимооценки, помимо возможности проявления личностных и групповых симпатий и антипатий, играет роль малая осведомленность экспертов о возможностях друг друга. В современных условиях достаточно хорошее знакомство с работами и возможностями друг друга может быть лишь у специалистов, много лет (не менее 3-4) работающих совместно, в одной комнате, над одной темой. Именно про такие пары можно сказать, что они "пуд соли вместе съели". Однако привлечение таких пар специалистов не очень-то целесообразно, поскольку их взгляды из-за схожести жизненного пути слишком похожи друг на друга. Малая осведомленность экспертов о возможностях друг друга приводит к взаимооценкам на основе недостаточных, а иногда и не вполне достоверных сведений, или на базе ранее описанных формальных показателей.

Если процедура экспертного опроса предполагает непосредственное общение экспертов, необходимо учитывать еще ряд обстоятельств. Большое значение имеют их личностные (социально-психологические) качества. Так, один-единственный "говорун" может парализовать деятельность всей комиссии на совместном заседании. К срыву могут привести и неприязненные отношения членов комиссии, и сильно различающийся научный и должностной статус членов комиссии. В подобных случаях важно соблюдение регламента работы, разработанного РГ.

Необходимо подчеркнуть, что подбор экспертов в конечном счете - функция Рабочей группы, и никакие методики подбора не снимают с нее ответственности. Другими словами, именно на Рабочей группе лежит ответственность за компетентность экспертов, за их принципиальную способность решить поставленную задачу. Важным является требование к ЛПР об утверждении списка экспертов. При этом ЛПР может как добавить в комиссию отдельных экспертов, так и вычеркнуть некоторых из них - по собственным соображениям, с которыми членам РГ и ЭК знакомиться нет необходимости.

Существует ряд нормативных документов, регулирующих деятельность экспертных комиссий в тех или иных областях. Примером является Закон Российской Федерации "Об экологической экспертизе" от 23 ноября 1995 г., в котором регламентируется процедура экспертизы "намечаемой хозяйственной или иной деятельности" с целью выявления возможного вреда, который может нанести рассматриваемая деятельность окружающей природной среде.

О разработке регламента проведения сбора и анализа экспертных мнений

Как уже отмечалось, существует масса методов получения экспертных оценок. В одних с каждым экспертом работают отдельно, он даже не знает, кто еще является экспертом, а потому высказывает свое мнение независимо от авторитетов, "кланов" и отдельных коллег. В других экспертов собирают вместе для подготовки материалов для ЛПР , при этом эксперты обсуждают проблему друг с другом, принимают или отвергают аргументы друг друга, учатся друг у друга, и неверные или недостаточно обоснованные мнения отбрасываются. В одних методах число экспертов фиксировано и таково, чтобы статистические методы проверки согласованности мнений и затем (в случае достаточно хорошей согласованности мнений) их усреднения позволяли принимать обоснованные решения с точки зрения эконометрики. В других - число экспертов растет в процессе проведения экспертизы, например, при использовании метода "снежного кома" для формирования команды экспертов.

В настоящее время не существует общепринятой научно обоснованной классификации методов экспертных оценок и тем более - однозначных рекомендаций по их применению. Попытка силой (приняв какой-либо нормативно-правовой документ) утвердить одну из возможных точек зрения может принести лишь вред.

Однако для рассказа о многообразии экспертных оценок необходима какая-либо рабочая классификация методов. Одну из таких возможных классификаций мы даем ниже, перечисляя основания, по которым мы делим экспертные оценки .

Какова цель работы комиссии ? Один из основных вопросов - что именно должна представить экспертная комиссия в результате своей работы - информацию для принятия решения ЛПР или проект самого решения? От ответа на этот методологический вопрос зависит организация работы экспертной комиссии, и он служит первым основанием для разбиения методов на группы с целью их классификации.

ЦЕЛЬ - СБОР ИНФОРМАЦИИ ДЛЯ ЛПР . Тогда Рабочая группа должна собрать возможно больше относящейся к делу информации, аргументов "за" и "против" определенных вариантов решений. Полезен следующий метод постепенного увеличения числа экспертов. Сначала первый эксперт приводит свои соображения по рассматриваемому вопросу. Составленный им материал передается второму эксперту, который добавляет свои аргументы. Накопленный материал поступает к следующему - третьему - эксперту... Процедура заканчивается, когда иссякает поток новых соображений.

Отметим, что эксперты в рассматриваемом методе только поставляют информацию, аргументы "за" и "против", но не вырабатывают согласованного проекта решения. Нет никакой необходимости стремиться к тому, чтобы экспертные мнения были согласованы между собой. Более того, наибольшую пользу приносят эксперты с мышлением, отклоняющимся от массового. Таких обычно называют диссидентами (т.е. инакомыслящими). Именно от них следует ожидать наиболее оригинальных аргументов.

ЦЕЛЬ - ПОДГОТОВКА ПРОЕКТА РЕШЕНИЯ ДЛЯ ЛПР . Эконометрические методы в экспертных оценках применяются обычно именно для решения задач, связанных с подготовкой проекта решения, основанного на итоговом коллективном мнении комиссии экспертов. При этом зачастую некритически принимают догмы согласованности и одномерности. Эти догмы "кочуют" из одной публикации в другую, поэтому целесообразно их обсудить.

ДОГМА СОГЛАСОВАННОСТИ . Часто без всяких оснований считается, что решение может быть принято лишь на основе согласованных мнений экспертов. Поэтому исключают из экспертной группы тех, чье мнение отличается от мнения большинства. (В лучшем случае им разрешает составить документ под названием: "Особое мнение".) При этом отсеиваются как неквалифицированные лица, попавшие в состав экспертной комиссии по недоразумению или по соображениям, не имеющим отношения к их компетентности и профессиональному уровню, так и наиболее оригинальные мыслители, глубже проникшие в проблему, чем большинство. Следовало бы выяснить их аргументы, предоставить им возможность для обоснования их точек зрения. Вместо этого их мнением пренебрегают.

Бывает и так, что эксперты делятся на две или более групп, имеющих единые групповые точки зрения. Так, хорошо известны примеры деления специалистов при оценке результатов научно-исследовательских работ (НИР) на две группы: "теоретиков", явно предпочитающих НИР, в которых получены теоретические результаты, и "практиков", выбирающих те НИР, которые позволяют получать непосредственные прикладные результаты (речь идет, например, об истории конкурсов НИР в академическом Институте проблем управления (автоматики и телемеханики)).

Иногда заявляют, что в случае обнаружения двух или нескольких групп экспертов (вместо одной согласованной во мнениях) опрос не достиг цели. Это не так! Цель достигнута - установлено, что единого мнения нет . Это весьма важно. И ЛПР при принятии решений должен это учитывать. Стремление обеспечить согласованность мнений экспертов любой целой может приводить к сознательному одностороннему подбору экспертов, игнорированию всех точек зрения, кроме одной, наиболее полюбившейся Рабочей группе (или даже "подсказанной" ЛПР ).

Часто не учитывают еще одного чисто эконометрического обстоятельства. Поскольку число экспертов обычно не превышает 20-30, то формальная статистическая согласованность мнений экспертов (установленная с помощью тех или иных критериев проверки статистических гипотез) может сочетаться с реально имеющимся разделением экспертов на группы, что делает дальнейшие расчеты не имеющими отношения к действительности, а потому не имеющими практического смысла. Для примера обратимся к конкретным методам расчетов с помощью коэффициентов конкордации на основе коэффициентов ранговой корреляции Кендалла или Спирмена. Необходимо напомнить, что согласно эконометрической теории положительный результат проверки согласованности таким способом означает ни больше, ни меньше, как отклонение конкретной статистической гипотезы , а именно, гипотезы о независимости и равномерной распределенности мнений экспертов на множестве всех ранжировок. Таким образом, проверяется нулевая гипотеза , согласно которой ранжировки, описывающие мнения экспертов, являются независимыми случайными бинарными отношениями , равномерно распределенными на множестве всех ранжировок . Отклонение этой нулевой гипотезы толкуется как принятие альтернативной гипотезы согласованности ответов экспертов. Другими словами, мы падаем жертвой заблуждений, вытекающих из различного толкования одних и тех же слов в не вполне связанных друг с другом научных дисциплинах: принятие статистической гипотезы согласованности в указанном математико-статистическом смысле вовсе не является обоснованием согласованности мнений экспертов в смысле практики экспертных оценок. (Именно ущербность рассматриваемых математико-статистических методов анализа ранжировок привела группу специалистов к разработке нового эконометрического аппарата для проверки согласованности - непараметрических методов, основанных на т.н. люсианах и входящих в современный раздел эконометрики - статистику нечисловых данных ). Группы экспертов с близкими взглядами можно выделить эконометрическими методами кластер -анализа.

МНЕНИЯ ДИССИДЕНТОВ . С целью искусственно добиться согласованности стараются уменьшить влияние мнений экспертов- диссидентов , т.е. инакомыслящих по сравнению с большинством. Жесткий способ борьбы с диссидентами состоит в игнорировании их мнений, т.е. фактически в их исключении из состава экспертной комиссии. Отбраковка экспертов, как и отбраковка резко выделяющихся результатов наблюдений (выбросов), приводит к процедурам, имеющим плохие или неизвестные статистические свойства. Так, известна крайняя неустойчивость классических методов отбраковки выбросов по отношению к отклонениям от предпосылок модели.

Мягкий способ борьбы с диссидентами состоит в применении робастных (устойчивых) статистических процедур . Простейший пример: если ответ эксперта - действительное число , то резко выделяющееся мнение диссидента сильно влияет на среднее арифметическое ответов экспертов и не влияет на их медиану. Поэтому разумно в качестве согласованного мнения рассматривать медиану. Однако при этом игнорируются (не достигают ЛПР ) аргументы диссидентов.

В любом из двух способов борьбы с диссидентами ЛПР лишается информации, идущей от диссидентов, а потому может принять необоснованное решение, которое впоследствии приведет к отрицательным последствиям. С другой стороны, представление ЛПР всего набора мнений снимает часть ответственности и труда по подготовке окончательного решения с комиссии экспертов и рабочей группы по проведению экспертного опроса и перекладывает эти ответственность и труд на плечи ЛПР .

ДОГМА ОДНОМЕРНОСТИ . Среди менеджеров и инженеров распространен довольно примитивный подход так называемой "квалиметрии", согласно которому объект экспертизы всегда можно оценить одним числом . Странная идея! Оценивать человека одним числом приходило в голову лишь на невольничьих рынках . Вряд ли даже самые рьяные квалиметристы рассматривают книгу или картину как эквивалент числа - ее " рыночной стоимости ".

Вместе с тем нельзя полностью отрицать саму идею поиска обобщенных показателей качества, технического уровня и аналогичных им. Так, каждый объект можно оценивать по многим показателям качества. Например, легковой автомобиль можно оценивать по таким показателям:

  • расход бензина на 100 км пути (в среднем);
  • надежность (средняя стоимость ремонта за год);
  • экологическая безопасность, оцениваемая по содержанию вредных веществ в выхлопных газах;
  • маневренность;
  • быстрота набора скорости 100 км/час после начала движения;
  • максимальная достигаемая скорость;
  • длительность сохранения в салоне положительной температуры при низкой наружной температуре (-50 градусов по Цельсию) и выключенном двигателе;
  • дизайн (привлекательность и "модность" внешнего вида и отделки салона);
  • представительность;
  • срок службы;
  • эксплуатационные расходы (за год);
  • цена;
  • приведенная к сопоставимым ценам стоимость 1 км пробега, и т.д.

Можно ли свести оценки по этим показателям вместе? Определяющей является конкретная ситуация, для которой выбирается автомашина. Максимально достигаемая скорость важна для гонщика, но, как нам представляется, не имеет большого практического значения для водителя рядовой частной машины, особенно в большом городе с суровым ограничением на максимальную скорость. Для такого водителя важнее расход бензина, маневренность и надежность . Для машин различных служб государственного управления, видимо , надежность важнее, чем для частника, а расход бензина - наоборот. Представительность важна для высших менеджеров и чиновников, занимающих высокие посты. Для районов Крайнего Севера важна теплоизоляция салона, а для южных районов - нет. И т.д.

Таким образом, важна конкретная (узкая) постановка задачи перед экспертами. Но такой постановки зачастую нет. А тогда "игры" по разработке обобщенного показателя качества - например, в виде линейной функции от перечисленных переменных - могут не дать объективных выводов. Альтернативой единственному обобщенному показателю является математический аппарат типа многокритериальной оптимизации - множества Парето и т.д.

В некоторых случаях все-таки можно глобально сравнить объекты - например, с помощью тех же экспертов получить упорядочение рассматриваемых объектов - изделий или проектов. Тогда можно ПОДОБРАТЬ коэффициенты при отдельных показателях так, чтобы упорядочение с помощью линейной функции возможно точнее соответствовало глобальному упорядочению (например, найти эти коэффициенты методом наименьших квадратов ). Наоборот, в подобных случаях НЕ СЛЕДУЕТ оценивать указанные коэффициенты непосредственно с помощью экспертов. Эта простая идея до сих пор не стала очевидной для отдельных составителей методик по проведению экспертных опросов и анализу их результатов. Они упорно стараются заставить экспертов делать то, что они выполнить не в состоянии - указывать веса, с которыми отдельные показатели качества должны входить в итоговый обобщенный показатель.

Эксперты обычно могут сравнить объекты или проекты в целом, но не могут вычленить вклад отдельных факторов. Раз организаторы опроса спрашивают, эксперты отвечают , но эти ответы не несут в себе надежной информации о реальности...

Отметим, что есть экспертные процедуры, в которых веса отдельных факторов вычисляются в результате тщательного анализа иерархической системы показателей. Для таких процедур приведенные выше критические замечания по поводу экспертного определения весов факторов не имеют силы.

ВТОРОЕ ОСНОВАНИЕ КЛАССИФИКАЦИИ ЭКСПЕРТНЫХ ПРОЦЕДУР - ЧИСЛО ТУРОВ . Экспертизы могут включать один тур, некоторое фиксированное число туров (два, три,…) или неопределенное число туров. Чем больше туров, тем более тщательным является анализ ситуации, поскольку эксперты при этом обычно много раз возвращаются к рассмотрению предмета экспертизы. Но одновременно увеличивается общее время на экспертизу и возрастает ее стоимость . Можно уменьшить расходы , вводя в экспертизу не всех экспертов сразу, а постепенно. Так, например, если цель состоит в сборе аргументов "за" и "против", то первоначальный перечень аргументов может быть составлен одним экспертом. Второй добавит к нему свои аргументы. Суммарный материал поступит к первому и третьему, которые внесут свои аргументы и контраргументы. И так далее - добавляется по одному эксперту на каждый новый тур.

Наибольшие сложности вызывают процедуры с заранее неопределенным числом туров, например, "снежный ком". Часто задают максимально возможное число туров, и тогда неопределенность сводится к тому, придется ли проводить это максимальное число туров или удастся ограничиться меньшим числом.

ТРЕТЬЕ ОСНОВАНИЕ КЛАССИФИКАЦИИ ЭКСПЕРТНЫХ ПРОЦЕДУР - ОРГАНИЗАЦИЯ ОБЩЕНИЯ ЭКСПЕРТОВ . Рассмотрим достоинства и недостатки каждого из элементов следующей шкалы: отсутствие общения - заочное анонимное общение - заочное общение без анонимности - очное общение с ограничениями - очное общение без ограничений.

При отсутствии общения эксперт высказывает свое мнение, ничего не зная о других экспертах и об их мнениях. Он полностью независим, что и хорошо, и плохо. Хорошо - потому что он полностью независим, защищен от любого давления. Плохо - он не знает соображений других экспертов, а потому опирается лишь на собственную информационную базу. Обычно такая ситуация соответствует однотуровой экспертизе.

Заочное анонимное общение , например, как в методе Дельфи, означает, что эксперт знакомится с мнениями и аргументами других экспертов, но не знает, кто именно высказал то или иное положение. Следовательно, в экспертизе должно быть предусмотрено хотя бы два тура, чтобы эксперт смог скорректировать свое мнение, познакомившись с мнениями других.

Заочное общение без анонимности соответствует, например, общению по Интернету. Экспертные опросы на основе информационных технологий -весьма перспективное направление развития в области организации экспертиз.

Все варианты заочной экспертизы хороши тем, что нет необходимости собирать экспертов вместе, следовательно, находить для этого удобное для всех экспертов время и место .

При очных экспертизах эксперты говорят, а не пишут, как при заочных, и потому успевают за то же время сказать существенно больше. Очная экспертиза с ограничениями весьма распространена. Это - собрание, идущее по фиксированному регламенту. Примером является военный совет в императорской русской армии, когда эксперты (офицеры и генералы) высказывались в порядке от младшего ( по чину и должности) к старшему. Подробно такой совет описан в повести А.С. Пушкина "Капитанская дочка". Другой пример - "мозговой штурм", при котором запрещается критиковать чужие высказывания.

Наконец, - это свободная дискуссия. Все очные экспертизы имеют недостатки, связанные с возможностями отрицательного влияния на их проведение социально-психологических свойств и клановых (партийных) пристрастий участников, а также неравенства их профессионального, должностного, научного статусов. Представьте себе, что соберутся вместе 5 лейтенантов и 3 генерала. Независимо от того, какая информация имеется у того или иного участника встречи, ход ее предсказать нетрудно: генералы будут говорить, а лейтенанты - помалкивать. Хотя опыт генералов несравним с лейтенантским, но в процессе недавнего обучения лейтенанты познакомились с последними научными достижениями, которые почти наверняка прошли мимо внимания генералов. Разумеется, этот пример можно обсудить не для совещания военных, а для собрания управленцев (менеджеров), врачей или преподавателей.

Необходимо обратить внимание на психологические особенности экспертов. Один начнет громко говорить на разные темы, как только ему это удастся, и словесный понос может продолжаться часами. От попыток прервать его и сказать свое такой деятель легко отбивается, в частности, за счет высокой скорости произнесения слов. Поведение другого эксперта противоположно. Он предпочитает помалкивать, пока ему не предоставлено слово , не тратить сил на попытки вклиниться в словесный понос "говоруна". Из сказанного ясно, что очная экспертиза без ограничений , т.е. свободная дискуссия - это недостижимый идеал, реально роль и возможности председателя заседания (зафиксированные в регламенте работы ЭК) должны быть достаточны велики.

КОМБИНАЦИЯ РАЗЛИЧНЫХ ВИДОВ ЭКСПЕРТИЗЫ . Реальные экспертизы часто представляют собой комбинации различных описанных выше типов экспертиз. В качестве примера рассмотрим систему экспертиз при подготовке и защите студентом дипломного проекта. Сначала идет многотуровая очная экспертиза, проводимая научным руководителем и консультантами, в результате учета результатов этой экспертизы студент подготавливает проект к защите. Затем два эксперта работают заочно - это автор отзыва сторонней организации и заведующий кафедрой, допускающий работу к защите. Обратите внимание на различие задач этих экспертов и объемов выполняемой ими работы - один пишет подробный отзыв и дает оценку проекту, второй росписью на титульном листе проекта разрешает его защиту. Наконец - очная экспертиза без ограничений (для членов государственной аттестационной комиссии). Дипломный проект оценивается коллегиально, по большинству голосов, при этом лишь один из экспертов (научный руководитель) знает работу подробно, а остальные - в основном лишь по докладу студента. Таким образом, имеем сочетание многотуровой и однотуровой, заочных и очных экспертиз. Подобные сочетания характерны для многих реально проводящихся экспертиз.

Задачи прогнозирова-ния, решаемые с помощью методов экспертных оценок, включают два формально не связанных между собой элемента: определение возмож-ных вариантов развития объекта прогнозирования и их оценку. Анализ экспертных методов показывает целесообразность применения «мозговых атак» для определения возможных вариантов развития. Их использование позволяет получить продуктивные результаты за короткий период времени и вовлечь всех экспертов в активный творческий процесс.

Методы «мозговых атак» можно классифицировать по признаку наличия или отсутствия обратной связи между руководителем и участниками «мозговой атаки» в процессе решения некоторой проб-лемной ситуации. Наличие обратной связи позволяет концентриро-вать внимание участников только на вариантах, полезных по тем или иным критериям для решения проблемной ситуации. Однако, ис-кусственно вводя ограничения, мы лишаемся возможности увидеть все многообразие подходов, и тем самым появляется вероятность пропустить оригинальные мысли, имеющие потенциальную, но не осознаваемую в настоящий момент ценность. Отсутствие обратной связи, т.е. максимальная стимуляция высказываний, предполагает проведение сложной и большой по объему работы на этапе их оценки. Создавшаяся ситуация потребовала разработать метод «мозговой атаки», способный качественно и достаточно быстро проводить оцен-ку вариантов, не ограничивая при этом их числа.

Сущность этого метода состоит в актуализации творческого потенциала специалистов при «мозговой атаке» проблемной ситуации, реализующей вначале генерацию идей и последующее деструирование (разрушение, критику) этих идей с формулированием контридей. Работа с методом «мозговой атаки» предполагает реализацию сле-дующих шести этапов.

Первый этап - формирование группы участников «мозговой атаки» (по численности и составу). Оптимальная числен-ность группы участников находится эмпирическим путем: наиболее продуктивными признаны группы в 10-15 человек. Состав группы участников предполагает их целенаправленный подбор: 1) из лиц примерно одного ранга, если участники знают друг друга; 2) из лиц разного ранга, если участники не знакомы друг с другом (в этом случае следует нивелировать каждого из участников при-своением ему номера с последующим обращением к участнику по но-меру). Что же касается необходимости специализации участника в области проблемной ситуации, то это условие не является обя-зательным для всех членов группы. Более того, весьма желательно, чтобы в группе были специалисты других областей знания, обладаю-щие высоким уровнем общей эрудиции и понимающие смысл проблем-ной ситуации.

Второй этап - составление проблемной записки участника мозговой атаки. Она составляется группой анализа проб-лемной ситуации и включает описание этого метода и описание проб-лемной ситуации. Данное описание содержит: принцип, на котором основан метод; условия, обеспечивающие наибольшую эффективность «мозговой атаки», авторство результатов атаки; основные правила проведения атаки. Описание проблемной ситуации содержит: причи-ны возникновения проблемной ситуации; анализ причин и возможные последствия возникшей проблемной ситуации (целесообразно гипер-болизировать последствия, с тем чтобы острее ощущалась необходи-мость разрешения противоречий); анализ мирового опыта разрешения подобной проблемной ситуации (если он имеется); классификацию (систематизацию) существующих путей разрешения проблемной ситуа-ции, формулировку проблемной ситуации в виде центрального вопро-са с иерархией подвопросов.

Третий этап - генерация идей. Она начинается с того, что ведущий раскрывает содержание проблемной записки. Предсказывая описание метода, ведущий концентрирует внимание участников на правилах проведения мозговой атаки: 1) высказывания участников должны быть четкими и сжатыми; 2) скептические замечания и критика предыдущих выступлений не допускаются; 3) каждый из участников имеет право выступать много раз, но не подряд; 4) не разрешается зачитывать подряд список идей, который может быть подготовлен участниками заранее. Пересказывая содер-жание проблемной ситуации, ведущий концентрирует внимание участ-ников на основном вопросе. Свое выступление ведущий должен стро-ить таким образом, чтобы пробудить психологическую восприимчи-вость участников, заставить их почувствовать потребность сде-лать то, о чем он их просит. Желаемый отклик участников - воля к целеустремленности мышления, направленного на решение проблем-ной ситуации.

Активная деятельность ведущего предполагается только в на-чале «мозговой атаки». После того как участники достаточно воз-будились, процесс выдвижения новых идей идет спонтанно. Ведущий в этом процессе играет пассивную роль, регламентируя участников согласно правилам проведения атаки. Следует помнить, что, чем разнообразнее и больше количество высказываний, тем шире и глуб-же охватывается рассматриваемый вопрос и тем больше вероятность появления ценных высказываний. Учитывая изложенное обстоятельство, ведущий при проведении атаки должен руководствоваться следующими правилами:

Сосредоточивать внимание участников на проблемной ситуации, задавая рамки специфическими её требованиями и терминологической строгостью высказываемых идей;

Не объявлять ложной, не осуждать и не прекращать исследова-ние ни одной идеи, т.е. рассматривать любую идею независимо от её кажущейся уместности или осуществимости;

Приветствовать усовершенствование или комбинацию идей, пре-доставляя слово в первую очередь тому, кто хочет высказаться в связи с предыдущим выступлением;

Оказывать поддержку и поощрение участникам, столь необходи-мые для того, чтобы освободить их от скованности;

Создавать непринужденность обстановки, способствуя, таким образом, активизации участников атаки.

Четвертый этап - систематизация идей, выска-занных на этапе генерации. Систематизацию идей группа анализа проблемной ситуации осуществляет в такой последовательности: составляется номенклатурный перечень всех высказанных идей; каждая из идей формулируется в общеупотребительных терминах; определяются дублирующие и дополняющие идеи; дублирующие и (или) дополняющие идеи объединяются и формулируются в виде одной комп-лексной идеи; выделяются признаки, по которым идеи могут быть объединены; идеи объединяются в группы согласно выделенным при-знакам; составляется перечень идей по группам (в каждой группе идеи записываются в порядке их общности: от более общих к част-ным, дополняющим или развивающим более общие идеи).

Пятый этап - деструирование (разрушение, критика) систематизированных идей (специализированная процедура оценки идей на практическую реализуемость в процессе мозговой атаки, когда каж-дая из них подвергается всесторонней критике со стороны участ-ников мозговой атаки).

Основное правило этапа деструирования - рассматривать каждую из систематизированных идей только с точки зрения препятствий на пути к её осуществлению, т.е. участники атаки выдвигают дово-ды, опровергающие систематизированную идею. Особенно ценным яв-ляется то обстоятельство, что в процессе деструирования может быть генерирована контридея, формулирующая имеющиеся ограничения и выдвигающая прещщложение о возможности снятия этих ограничений.

Группа участников мозговой атаки этого этапа состоит из высококвалифицированных специалистов в обсуждаемой области, числен-ность её достигает 20-25 человек, а продолжительность - 1,5 часа. Процесс деструирования продолжается до тех пор, пока каждая из систематизированных идей перечня не подвергнется критике. Высказанные критические замечания и контридеи записываются на магни-тофон.

Шестой этап - оценка критических замечаний и составление списка практически применимых идей. Реализацию этапа осуществляет группа анализа проблемной ситуации:

1. Составляется перечень всех критических замечаний, полученных на этапе деструирования. При необходимости критические замечания уточняются, отбрасываются дублирующие.

2. Составляется сводная таблица этапов систематизации и деструирования идей, а также список показателей практической применимости идей (эти показатели в каждом конкретном случае специфичны и зависят от конкретной проблемной ситуации). Первая графа таблицы - результаты этапа систематизации идей; вторая - критические замечания, опровергающие идеи; третья - показатели практической применимости идей; четвертая - контридеи, высказанные на этапе деструирования.

3. Оценивается каждое критическое замечание и контридея:

а) вычеркивается из таблицы, если опровергается хотя бы одним показателем практической применимости;

б) не вычеркивается, если оно не опровергается ни одним показателем.

4. Составляется окончательный список идей; переносятся в список только те идеи, которые не опровергнуты критическими замечаниями и остались в таблице, а также контридеи.

Метод коллективной генерации идей апробирован на практике и позволяет находить групповое решение при определении возможных вариантов развития объекта прогнозирования, исключая путь комп-ромиссов, когда единое мнение нельзя считать результатом беспри-страстного анализа проблемы.

Дельфийский метод . В последние два де-сятилетия созданы отдельные методики, позволяющие в определенной мере организовать статистическую обработку мнений экспертов-специалистов и достигнуть более или менее согласованного их мне-ния. Метод «Дельфи» - один из наиболее распространенных методов экспертной оценки будущего, т.е. экспертного прогнозирования. Этот метод разработан американской исследовательской корпорацией РЭНД и служит для определения и оценки вероятности наступления тех или иных событий.

Метод «Дельфи» построен на следующем принципе: в неточных науках мнения экспертов и субъективные суждения в силу необходимости должны заменить точные законы причинности, отражаемые естественными науками.

Метод «Дельфи» позволяет обобщать мнения отдельных экспер-тов в согласованное групповое мнение. Ему присущи все недостат-ки прогнозов, построенных на основе экспертных оценок. Однако проводимые корпорацией РЭНД работы по совершенствованию этой системы значительно повысили гибкость, быстроту и точность про-гнозирования.

Метод «Дельфи» характеризуется тремя особенностями, которые отличают его от обычных методов группового взаимодействия экс-пертов. К таким особенностям относятся: а) анонимность экспер-тов; б) использование результатов предыдущего тура опроса; в) статистическая характеристика группового ответа.

Анонимность заключается в том, что в ходе проведения про-цедуры экспертной оценки прогнозируемого явления, объекта участ-ники экспертной группы неизвестны друг другу. При этом взаимо-действие членов группы при заполнении анкет, полностью устраня-ется. В результате такой постановки автор ответа может изменить свое мнение без публичного объявления об этом.

Использование результатов предыдущего тура опроса заключа-ется в следующем: поскольку групповое взаимодействие осуществля-ется непосредственно с помощью ответа на анкету, специалист или организация, проводящие исследования по методу «Дельфи», извле-кает из анкет только ту информацию, которая относится к данной проблеме. Специалист-прогнозист учитывает мнение экспертов «за» и «против» по каждой точке зрения. Основной результат функциони-рования этой системы состоит в том, чтобы предотвратить принятие группой своих собственных целей и задач. Эта система дает возмож-ность группе специалистов концентрировать свои усилия на перво-начальных задачах, а не предполагать каждый раз что-то новое.

Статистическая характеристика группового ответа заключается в том, что группа специалистов составляет прогноз, содержащий точку зрения только большинства экспертом, т.е. такую точку зре-ния, с которой могло бы согласиться большинство группы. Однако вряд ли может существовать какой-либо показатель степени разли-чия мнений, которые могли существовать у членов группы. Вместо этого в методе «Дельфи» используются статистические характерис-тики ответа, который включает мнение всей группы. Каждый ответ внутри группы учитывается при построении медианы, а величина разброса ответов характеризуется величиной интервала между квар-тилями. Иными словами, групповой ответ может быть представлен в виде медианы и двух квартилей, т.е. в виде такого числа, оцен-ки которого одной половиной членов группы были больше этого чис-ла, а другой половиной - меньше. Метод «Дельфи» дает возможность эффективно взаимодействовать членам жюри, хотя результаты этого взаимодействия и контролируются руководителем группы путем суммирования аргументов. Члены жюри изменяют свои оценки именно тогда, когда убедительны доводы их коллег, а противном случае они упорно придерживаются своих противоположных точек зрения.

Метод «Дельфи» осуществим и эффективен при получении преиму-ществ от участия группы в подготовке прогноза; в то же время этот метод сводит до минимума или устраняет большинство труднос-тей, связанных с работой комиссии, хотя он может потребовать больше времени, чем комиссия с личным общением членов, особенно если опрос производится по почте.

В развитии метода «Дельфи» применяется перекрестная коррекция. Будущее событие представляется как огромное множество свя-занных и переходящих друг в друга путей развития.

Представив прогноз научно-технических сдвигов как Д 1 , Д 2 , …, Д n , а соответствующие им вероятности как Р 1 , Р 2 , …, Р n и по-лагая Р 1 =100% , находят изменения значений Р 2 , …, Р i , …, Р n .

При введении перекрестной корреляции значения каждого собы-тия за счет введенных определенных связей будут изменяться либо в положительную, либо в отрицательную сторону, корректируя тем самым вероятности рассматриваемых событий. С целью будущего со-ответствия модели реальным условиям в модель могут быть введены элементы случайности.

Сущность методов экспертных оценок для разра-ботки прогнозов состоит в определении согласованности мнений экспертов по перспективным направлениям развития объекта прог-нозирования, сформулированным ранее отдельными специалистами, а также в оценке аспектов развития объекта, которая не может быть определена другими методами (например, аналитическим расчетом, экспериментом и т.д.).

I. Создание групп. Для организации проведения экспертных оценок создаются рабочие группы, в функции которых входят проведение опроса, обработка материалов и анализ результатов коллективной экспертной оценки. Рабочая группа назначает экспертов, которые дают ответы на поставленные вопросы, касающиеся перспектив раз-вития данной отрасли. Количество экспертов, привлекаемых для раз-работки прогноза, может колебаться от 10 до 150 человек, в зави-симости от сложности объекта.

II. Формулирование глобальной цели системы. Перед тем, как организовать опрос экспертов, не-обходимо уточнить основные направления развития объекта, а также составить матрицу, отражающую генеральную цель, подцели и сред-ства их достижения. При этом в ходе предварительного анализа совместно с группой специалистов определяются наиболее важные цели и подцели для решения поставленной задачи. Под средствами достижения цели понимаются направления научных исследований и разработок, результаты которых могут быть использованы для дости-жения цели. При этом направления научных исследований и разрабо-ток не должны пересекаться друг с другом.

III. Разработка анкеты. Заключается в раз-работке вопросов, которые будут предложены экспертам. Форма воп-роса может быть разработана в виде таблиц, но содержание их долж-но определяться спецификой прогнозируемого объекта или отрасли. При этом вопросы должны быть составлены по определенной структур-но-иерархической схеме, т.е. от широких вопросов к узким, от сложных к простым.

При проведении опроса экспертов необходимо обес-печить однозначность понимания отдельных вопросов, а также неза-висимость суждений экспертов.

IV. Расчёт экспертных оценок. Необходимо провести обработку материалов экс-пертных оценок, которые характеризуют обобщенное мнение и сте-пень согласованности индивидуальных оценок экспертов. Обработка данных оценок экспертов служит исходным материалом для синтеза прогнозных гипотез и вариантов развития отрасли.

Окончательная количественная оценка определяется с помощью четырех основных методов экспертных оценок и множества их разновидностей:

1)метод простой ранжировки (или метод предпочтения);

2)метод задания весовых коэффициентов;

3)метод парных сравнений;

4)метод последовательных сравнений.

Метод простой ранжировки заключается в том, что каждого эксперта просят расположить признаки в порядке предпочтения. Цифрой один обозначается наиболее важный признак, цифрой два - следующий за ним по важности и т.д. полученные данные сводятся в следующую таблицу.

Таблица 2.1 Экспертные оценки признаков (направлений исследований)

Порядок предпочтения данного признака перед другими.

Затем с помощью методов математической статистики получают обобщенное мнение экспертов. Определяется средний ранг, среднее статистическое значение S j j-го признака:

где m kj - количество экспертов, оценивающих j-й признак (m k m);

i - номер эксперта; i = 1,…,m;

j - номер признака, j = 1,2,…,n.

Определяется средний ранг каждого признака. Чем меньше величина S j , тем больше важность этого признака.

Для того чтобы можно было сказать, случайно ли распределение рангов или имеется согласованность в мнениях экспертов, производится вычисление коэффициента конкордации , введенного М. Кендаллом.

Определяется средний ранг совокупности признаков:

Вычисляется отклонение d j среднего ранга j-го признака от среднего ранга совокупности:

Определяется число одинаковых рангов, назначенных экспертами j-му признаку - t q .

Определяется количество групп одинаковых рангов - Q. Определяется коэффициент конкордации по формуле:

,(2.4)

,(2.5)

Коэффициент может принимать значения в пределах от 0 до 1. При полной согласованности мнений экспертов коэффициент конкордации равен единице при полном разногласии - нулю. Наиболее реальным является случай частичной согласованности мнений экспертов.

По мере увеличения согласованности мнений экспертов коэффициент конкордации возрастает и в пределе стремится к единице. Однако даже если он равен или близок к нулю, не всегда имеет место полное разногласие. Среди экспертов могут быть группы с хорошо согласованными мнениями, но мнения эти - противоположны и в общей массе нейтрализуют друг друга. В таком случае следует проделать кластерный или комбинированный анализ для выявления этих групп.

Достоинства метода простой ранжировки:

1) сравнительная простота процедуры получения оценок;

2) меньшее число экспертов по сравнению с другими методами при оценке одного и того же набора признаков.

Недостаток же его в том, что:

1) заведомо считают распределение оценок равномерным;

2) уменьшение важности признаков предполагается также равномерным, в то время как на практике этого не бывает.

Метод задания весовых коэффициентов заключается в присвоении всем признакам весовых коэффициентов. Весовые коэффициенты могут быть проставлены двумя способами:

1) всем признакам назначают весовые коэффициенты так, чтобы суммы коэффициентов была равна какому-то фиксированному числу (например, единице, десяти или ста);

2) наиболее важному из всех признаков придают весовой коэффициент, равный какому-то фиксированному числу, а всем остальным - коэффициенты, равные долям этого числа.

Обобщенное мнение экспертов также получаем с помощью методов математической статистики по формулам (2.1 - 2.5).

Метод последовательных сравнений заключается в следующем:

1) эксперт упорядочивает все признаки в порядке уменьшения их значимости: А 1 > A 2 >…> A n ;

2) присваивает первому признаку значение, равное единице: A 1 =1, остальным же признакам назначает весовые коэффициенты в долях единицы;

3) сравнивает значение первого признака с суммой всех последующих.

Возможны три варианта:

A 1 >A 2 + A 3 + … + A n

A 1 = A 2 + A 3 + … + A n

A 1 < A 2 + A 3 + …+ A n

Эксперт выбирает наиболее соответствующий, по его мнению, вариант и приводит в соответствие с ним оценку первого события;

4) сравнивает значение первого признака с суммой всех последующих за вычетом самого последнего признака.

Приводит оценку первого признака в соответствие с выбранным из трех вариантов неравенством:

A 1 > A 2 + A 3 + … + A n-1

A 1 = A 2 + A 3 + … + A n-1

A 1 < A 2 + A 3 + … + A n-1

5) процедура повторяется до сравнения A 1 с A 2 + A 3.

После того как эксперт уточнил оценку первого признака в соответствии с выбранным им неравенством из трех возможных:

A 1 > A 2 + A 3

A 1 < A 2 + A 3

он переходит к уточнению оценки второго признака A 2 по той же схеме, что и в случае первого, т.е. сравнивается оценка второго признака с суммой последующих.

Преимущество его состоит в том, что эксперт в процессе оценивания признаков сам анализирует свои оценки. Вместо назначения коэффициентов возникает творческий процесс создания этих коэффициентов.

Недостатки метода таковы:

1) сложность его; неподготовленный эксперт будет с трудом справляться с этой процедурой; вместо того, чтобы уточнять свои первоначальные оценки, он будет путаться в них;

2) громоздкость; на оценку одного и того же набора признаков он требует в четыре раза больше операций, чем метод простой ранжировки (другими словами, для одной и той же работы нужно в четыре раза больше экспертов).

Метод парных сравнений

Согласно ему все признаки попарно сравниваются между собой. На основании парных сравнений путем дальнейшей обработки находятся затем оценки каждого признака.

Чтобы эксперту было удобнее проводить сравнения, признаки (A,B,C,…N) заносятся в таблицу и по горизонтали и по вертикали.

Эксперт заполняет клетки такой таблицы. Сравнение признака самого с собой дает единицу. В первой клетке эксперт пишет единицу, во второй - результат сравнения первого признака со вторым, в третьей - результат сравнения первого признака с третьим и т.д. Переходя ко второй строке, эксперт записывает в первой клетке результат сравнения второго признака с первым, во втором - единицу, в третьей - сравнение второго признака с третьим и т.д.

Половина таблицы, расположенная выше диагонали, служит отражением нижней половины. Чтобы не вносить путаницу, не провоцировать эксперта вычислять одну половину таблицы по другой, чтобы уменьшить число операций, целесообразно заполнять только одну половину таблицы (выше или ниже диагонали). Таким образом, ответы экспертов будут представлены в виде следующей матрицы:

После ряда математических преобразований мы получаем оценки каждого признака А 1 , А 2 , … ,А n с точки зрения данного эксперта. Суммарные оценки признаков получаются путем идентичной обработки суммарной матрицы, каждый элемент которой есть сумма сравнений признаков, данных всеми экспертами.

Суммарная матрица имеет вид

m - число экспертов, оценивающих данный набор признаков;

- оценки соответственно 1, 2, …, j, …, m экспертов;

Суммарные оценки, данные всеми экспертами.

Определяя дисперсию суммарной матрицы и сравнивая её с максимально возможной дисперсией матрицы с таким же числом элементов, можно определить согласованность мнений экспертов. Чем ближе дисперсия суммарной матрицы к максимально возможной дисперсии, тем выше согласованность мнений. Таким образом, метод парных сравнений позволяет провести строгий, статистически обоснованный анализ согласованности мнений экспертов, выявить, случайны или нет полученные оценки. Несомненно, процедура метода парных сравнений сложнее метода простой ранжировки, но проще метода последовательных сравнений.

Число экспертов, требуемое для оценки определенной совокупности признаков методом парных сравнений, в два раза больше, чем при использовании метода простой ранжировки, и в два раза меньше, чем при методе последовательных сравнений.

В настоящее время во многих методах проведения экспертных оценок предлагается в качестве показателя компетентности эксперта коэффициент:

, (2.6)

где- коэффициент компетентности эксперта;

Коэффициент степени знакомства эксперта с обсуждаемой проблемой;

Коэффициент аргументированности.

Коэффициент степени знакомства с направлением исследований определяется путем самооценки эксперта по десятибалльной шкале. Значения баллов для самооценки следующие:

0 - эксперт не знаком с вопросом;

1,2,3 - эксперт плохо знаком с вопросом, но вопрос входит в сферу его интересов;

4,5,6 - эксперт удовлетворительно знаком с вопросом, не принимает непосредственного участия в практическом решении вопроса;

7,8,9 - эксперт хорошо знаком с вопросом, участвует в практическом решении вопроса;

10 - вопрос входит в круг узкой специализации эксперта.

Эксперту предлагается самому оценить степень своего знакомства с вопросом и подчеркнуть соответствующий балл. Затем этот балл умножается на 0,1, и получаем коэффициент.

Коэффициент аргументированности учитывает структуру аргументов, послуживших эксперту основанием для определенной оценки. Коэффициент аргументированности предлагается определить в соответствии с таблицей 2.2 путем суммирования значений, отмеченных экспертом в клетках этой таблицы.

Определив коэффициент компетентности, умножают на него значение оценок экспертов.

Таблица 2.2 Значения коэффициента аргументированности

После проведения опроса группы экспертов осуществляется обработка результатов. Целью обработки является получение обобщенных данных и новой информации, содержащейся в скрытой форме в экспертных оценках. В зависимости от целей экспертного оценивания при обработке результатов опроса возникают следующие основные задачи:

Определение компетентности экспертов и обобщенной оценки объектов;

Построение обобщенной ранжировки объектов;

Определение согласованности мнений экспертов;

Определение зависимостей между ранжировками.

2.4.1 Определение компетентности экспертов и обобщенной оценки объектов

Пусть m экспертов произвели оценку n объектов. Результаты оценки представлены в виде вели­чин x ij , где j- номер эксперта, i- номер объекта. Эти величины могут быть зада­ны с использованием баллов либо чисел, принадлежащих некоторому отрезку числовой оси.

Коэффициент компетентности экспертов и обобщенные оценки объектов для тех случаев, когда проводится непосредственное числовое оценивание альтер­натив можно вычислить по апостериорным данным, т.е. по резуль­татам оценки объектов. При этом компетентность экспертов оце­нивается по степени согласованности их оценок с групповой оценкой объектов.

Алгоритм вычисления коэффициентов компетентности экспер­тов и обобщенной оценки объектов сводится к расчетам по следующим рекуррентным формулам:

Вычисления начинаются с t=1. Начальные значения компетентности принимаются одинаковыми и равными

В работе были исследованы вопросы сходимости рассмат­риваемой рекуррентной процедуры. Для этого из уравнений (1) и (3) были исключены переменные k j (t-1) и x i t . Указанные уравнения (после данного преобразования) в векторно-матричной форме примут вид

(4)

где матрицы B и C имеют соответственно размерности (n*n) и (m*m):

Из теоремы Перроны-Фробениуса следует, что если мат­рицы B, C неотрицательны и неразложимы, то при t®¥ векторы сходятся к собственным векторам матриц B и C , соответс­твующим максимальным собственным числам этих матриц. Предель­ные значения векторов вычисляются при решении следующих уравнений:

(5)

(6)

где l B , l C - максимальные собственные числа матриц B, C .

На практике условия неразложимости и неотрицательности B, C практически всегда выполняются.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

С о д е р ж а н и е
стр. Предисловие……………………………………………….…. 1. Цель р

Цель работы
Целью работы является изучение методов обработки экспертной информации. Выполнение работы предполагает закрепление курсантами знаний по материалу дисциплины “Военная систем

Сущность метода экспертных оценок
Сущность метода экспертных оценок заключается в рациональной организации проведения экспертами анализа проблемы с количественной оценкой суждений и обработкой их результатов. В процессе ре

Подбор экспертов
В зависимости от масштаба решаемой проблемы организацию процедуры проведения экспертного оценива­ния осуществляет лицо, принимающее решение, (ЛПР) или назначаемая им группа управления. Подбор колич

Опрос экспертов
Опрос экспертов представляет собой заслушивание и фиксацию в содержательной и количественной форме суждений экспертов по решаемой проблеме. Основными видами опроса экспертов являются: ан

Построение обобщенной ранжировки объектов
Рассмотрим теперь случай, когда эксперты производят измерение объектов в порядковой шкале методом ранжирования, так что xij есть ран­ги. Задачей обработки является построение обобщенной

Определение согласованности мнений экспертов
При оценке объектов эксперты обычно расходятся во мнениях по решаемому вопросу. В связи с этим возникает необходимость количественной оценки степени согласия экспертов. Оценка согласованности мнени

Определение зависимостей между ранжировками
При обработке результатов ранжирования нередко возникает необходимость определения зависимости между результатами ранжирования, полученны­ми от двух экспертов. Принято меру взаимосвязи оценивать ко

Формула Спирмена верна лишь при отсутствии в ранжироваках связанных (повторяющихся) рангов ообъектов
Пусть ранжировки двух экспертов, тогда оценки взаимного корреляционного момента и дисперсии этих ранжировок вычисляются по формулам:

Произведем расчет коэффициентов компетентности экспертов и коэффициентов обобщенной оценки объектов
Для расчета коэффициентов компетентности экспер­тов и обобщенной оценки объектов воспользуемся формулами (5), (6)

Произведем расчет обобщенной ранжировки объектов
Построим матрицы ранжировок экспертов (y1, y2, y3 ,y4) y1= О1

Произведем расчет дисперсионного коэффициента конкордации экспертов
Матрица ранжировок А имеет связанные ранги, поэтому для определения коэффициента конкордации экспертов воспользуемся формулами (15), (16).

Подготовим исходные данные для расчета ранговой корреляции пар экспертов. По оценкам объектов произведем их ранжировку
Э О О1 О2 О3 О4 Hn hk T

В квалиметрии экспертный метод применяется:

1) для измерения показателей качества;

2) для определения зна­чений весовых коэффициентов.

Однако он не является принадлежностью только квалиметрии. Экспертный метод применяется и при измерении физических величин, в медицине (консилиумы), в искусстве (жюри), в социально-политической сфере (референдумы), в государственном и хозяйственном управлении (коллегиальность). Но именно потребности квалиметрии поставили этот метод измерений на строгую научную основу.

Независимо от целей и задач применение экспертного метода предполагает соблюдение следующих условий:

экспертная оценка должна производиться только в том случае, когда нельзя использовать для решения вопроса более объективные методы;

в работе экспертной комиссии не должно присутствовать. Факторов, которые могли бы влиять на искренность суждений экспертов; мнения экспертов должны быть независимыми;

вопросы, поставленные перед экспертами, не должны допускать различного толкования;

эксперты должны быть компетентны в решаемых вопросах;

количество экспертов должно быть оптимальным;

ответы экспертов должны быть однозначными и обеспечивать возможность их математической обработки.

Качественный состав экспертной комиссии - важное условие эффективности экспертного метода. Вполне очевидно, что во всех без исключения случаях экспертиза должна проводиться грамотными, высококвалифицированными, вполне компетентными в рассматриваемых вопросах и достаточно опытными специалистами. Весьма полезным является их специальное предварительное обучение и совершенно необходимым - инструктаж. На завершающем этапе формирования экспертной группы целесообразно провести тестирование, самооценку, взаимооценку экспертов, анализ их надежности и проверку согласованности мнений.

Тестирование состоит в решении экспертами задач, подобных реальным, с известными (но не экспертам) ответами. На основании результатов тестирования устанавливается компетентность и профпригодность экспертов.

Самооценка экспертов состоит в ответе каждым из них в строго ограниченное время на вопросы специально составленной анкеты, в результате чего быстро и просто проверяются ими же самими их профессиональные знания и деловые качества. Оценка их дается каждым экспертом по балльной системе. При всей субъективности такой оценки опыт показывает, что экспертные группы с высокими показателями самооценки экспертов ошибаются в меньшей степени.

Весьма показательной является взаимная оценка экспертами друг друга (также по балльной системе). Для этого они должны, разумеется, иметь опыт совместной работы.

При наличии сведений о результатах работы эксперта в других экспертных группах критерием его квалификации может стать показатель или степень надежности - отношение числа случаев, когда мнение эксперта совпало с результатами экспертизы, к общему числу экспертиз, в которых он участвовал. Использование этого подхода к отбору экспертов требует накопления и анализа большого объема информации, но открывает возможность непрерывного совершенствования качественного состава экспертных групп.

Каждый эксперт дает одно из значений отсчета, являющегося, согласно основному постулату метрологии, случайным числом. Порядок и правила дальнейших действий рассмотрены в гл. 2. В частности, однократное измерение экспертным методом требует использования большого объема априорной информации. При визуальной топографической съемке, например, большое значение имеет глазомер эксперта, при измерении эстетических показателей качества- его художественный вкус и т. д. Многократное измерение одной и той же физической (или другой) величины постоянного размера, либо показателя качества может быть организовано с последующим усреднением экспериментальных данных по времени (если измерение выполняется одним экспертом) или по множеству (если измерение производится одновременно несколькими экспертами). Первый способ применяется редко, так как субъективные особенности эксперта выступают в этом случае в качестве постоянно действующих факторов, трудно поддающихся исключению, компенсации или учету. Во втором способе они выступают в качестве случайных и нивелируются при усреднении по множеству. Отсчет, полученный группой экспертов, представляется множеством его отдельных значений или законом распределения вероятности. При большом количестве отдельных значений отсчета по правилу "трех сигм" легко обнаруживаются и устраняются ошибочные. Если отсчет подчиняется нормальному закону распределения вероятности, то его среднее арифметическое при количестве экспертов п > 30 ... 40 тоже подчиняется нормальному закону, а при меньшем их числе - закону распределения вероятности Стьюдента. Интервал возможных значений измеряемой величины или показателя качества в окрестностях среднего арифметического значения с выбранной доверительной вероятностью устанавливается по графикам, приведенным на рис. 38.

При подборе экспертов большое внимание уделяется согласованности их мнений, которая характеризуется смещенной или несмещенной оценкой дисперсии отсчета. С этой целью на этапе формирования экспертной группы проводятся контрольные измерения с математической обработкой их результатов. Нередко при этом используется не один, а сразу несколько объектов измерений, которые в зависимости от их ценности или качества нужно расставить по шкале порядка, т.е. определить их ранг, ибо измерение по шкале порядка называется ранжированием. За меру согласованности мнений экспертов в этом случае принимается так называемый коэффициент конкордации.

где S - сумма квадратов отклонений суммы рангов каждого объекта экспертизы от среднего арифметического рангов; п - число экспертов; m - число объектов экспертизы. В зависимости от степени согласованности мнений экспертов коэффициент конкордации может принимать значения от 0 (при отсутствии согласованности) до 1 (при полном единодушии).

Пример 75. Определить степень согласованности мнений 5-ти экспертов, результаты ранжирования которыми 7-ми объектов экспертизы приведены в табл. 45.

Решение.1. Среднее арифметическое рангов

2. Используя результаты промежуточных вычислении, приведенные в табл.45, получаем S= 630.

3. Коэффициент конкордации

Степень согласованности мнений экспертов можно считать удовлет­ворительной.

Если степень согласованности мнений экспертов оказывается неудовлетворительной, принимают специальные меры для ее повышения. Сводятся они, в основном, к проведению тренировок с обсуждением результатов и разбором ошибок. Если возможности для предварительной подготовки экспертов нет, измерение экспертным методом проводится по методу Дельфы*. Характерными чертами ого метода являются:

анонимность; эксперты не встречаются друг с другом, чтобы избежать влияния авторитета и красноречия кого-либо из них;

многоэтапность; после каждого тура опроса все эксперты знакомятся с мнением друг друга и при необходимости представляют письменные обоснования своих точек зрения. Соглашаясь или не соглашаясь с мнениями своих коллег, они могут пересматривать свою точку зрения;

контроль; после каждого тура проверяется согласованность мнений экспертов до тех пор, пока разброс отдельных мнений не снизится до заранее выбранного значения.

При особо ответственных измерениях экспертным методом могут учитываться весовые коэффициенты квалификации экспертов.

* Этот метод впервые был предложен в начале 1950-х г. американскими учеными Т. Дж. Гордоном и О. Хелмером для решения военных проблем. Название его происходит от древнегреческого города Дельфы, где по преданию при храме Апполона с IX в. до н. э. по IV в. н. э. существовал совет мудрецов ("дельфийский оракул"), славившийся своими предсказаниями.

Количество экспертов тоже играет важную роль. С ростом числа экспертов в группе точность измерения повышается. Это фундаментальное свойство любого многократного измерения определено выражением (11). Чтобы воспользоваться им для определения численности экспертной группы n, обеспечивающей заданную точность измерения, нужно опять-таки в подготовительный период установить закон распределения вероятности отсчета, получаемого экспертным методом, или хотя бы его среднее квадратическое отклонение , не зависящие от n. Тогда по графику на рис. 159, отражающему зависимость (11), можно найти число экспертов n, при котором среднее квадратическое отклонение среднего арифметического будет соответствовать требуемому. Исходная численность экспертной группы составляет обычно не менее 7 человек. В отдельных случаях она достигает 15 ... 20 экспертов (массовый опрос проводится, как правило, только при социологических исследованиях). Если в подготовительный период не определено, то достижение требуемой точности за счет расширения экспертной группы достигается уже в процессе измерения экспертным методом так, как это показано на рис. 39.

В некоторых случаях требуется обеспечить максимально возможную точность измерения экспертным методом. В этих случаях состав экспертной группы целесообразно ограничить таким числом экспертов п, при котором разли­чия между средними арифметическими и оценками дисперсий результатов измерений при n и n + 1 экспертах перестают быть значимыми. Эти условия проверяются по алгоритмам, приведенным на рис. 41 и 43.

По тому, в какой форме эксперты выражают свое мнение, т.е. по способу проведения экспертизы, различают:

непосредственное измерение;

ранжирование;

сопоставление.

При непосредственных измерениях экспертным методом значения физических величин или показателей качества оп­ределяются сразу в установленных единицах (то ли в единицах СИ, то ли в баллах, нормо-часах, рублях, единицах условного топлива и т.д.). Такие измерения могут проводиться как по шкале отношений, так и по шкале интервалов или шкале порядка. Измерения по шкале отношений требуют наличия эталонов. К ним относятся органолептические методы измерения длины, массы, силы света и многие другие. Непосредственное измерение весовых коэффициентов, сумма которых должна равняться единице, производится по шкале порядка. Значения этих коэффициентов рассчитываются по формуле

где п - количество экспертов; m - число “взвешиваемых” показателей; - коэффициент весомости j -го показателя в баллах, данный i -м экспертом.

По реперным шкалам порядка измеряется в баллах сила морского волнения, сила землетрясений и т.п. Непосредственно путем приписывания баллов (обычно от 1 до 10) могут измеряться по шкале порядка и такие свойства, для которых нет ни эталонов, ни объективных критериев. В последнем случае из соотношения баллов нельзя делать каких-либо количественных выводов.

Непосредственное измерение экспертным методом является наиболее сложным и предъявляет к экспертам наиболее высокие требования.

Ранжирование состоит в расстановке объектов измерений или показателей в порядке их предпочтения, по важности или весомости. Место, занятое при такой расстановке, называется рангом. Чем выше ранг, тем предпочтительней объект, весомее, важнее показатель.

Пример ранжирования пятью экспертами семи объектов экспертизы приведен в табл. 45. Если это, допустим, художественные произведения, то результат измерения их качества по шкале порядка таков:

лучшим является седьмое, вторым по качеству - четвертое, затем - шестое, первое, второе, третье и пятое. Если же ранжирование прово­дилось с целью определения весовых коэффициентов g i для семи пока­зателей качества, то они рассчитываются по формуле (53), в которой - ранг j - го показателя, установленный i -м экспертом, В примере 75

Сопоставление бывает последовательным и попарным. Последовательное сопоставление каждого. Объекта экспертизы с совокупностью всех тех, которые ниже рангом, позволяет откорректировать ранжированный ряд, уточнить позиции входящих в него объектов с учетом их важности. Оно имеет смысл тогда, когда несколько объектов экспертизы можно рассматривать как один составной объект той же природы. Порядок последовательного сопоставления следующий.

1. Объекты экспертизы располагаются в порядке их предпочтения (ранжирование).

2. Наиболее важному объекту приписывается балл или весовой коэффициент, равный 1; всем остальным в порядке уменьшения их относительной значимости - баллы или весовые коэффициенты 1 до 0.

3. Сопоставляется первый объект с совокупностью всех остальных. Если, по мнению эксперта, он предпочтительнее, чем совокупность всех остальных вместе взятых, то результат его измерения в баллах или весовой коэффициент корректируется в сторону увеличения с таким расчетом, чтобы он стал больше (иногда определяют и на сколько больше) суммы баллов или весовых коэффициентов всех остальных объектов экспертизы, которые ниже рангом. В противном случае результат измерения или весовой коэффициент первого объекта корректируется в сторону уменьшения так, чтобы он оказался меньше суммы баллов или весовых коэффициентов остальных объектов.

4. Сопоставляется второй объект с совокупностью всех остальных, стоящих ниже рангом. По установленному выше правилу корректируется результат его измерения или значение весового коэффициента (при этом нужно следить, чтобы не нарушилось предпочтение первого объекта перед совокупностью всех остальных, если оно установлено на предыдущем этапе). Такая процедура сопоставлений и корректировок продолжается вплоть до предпоследнего объекта.

5. Полученные результаты измерений или весовые коэффициенты нормируют, т.е. делят на общую сумму баллов или весовых коэффициентов. После этого они принимают значения в пределах от 0 до 1, а их сумма становится равной 1.

Попарное сопоставление самое простое и наиболее оправданное с психологической точки зрения, рассмотрено в примерах 21 и 22. Как можно заметить, табл. 17 и 18 являются избыточными. При попарном сопоставлении достаточно данных, приведенных в таблицах по одну сторону от диагонали. Предпочтение при этом выражается указанием номера предпочтительного объекта так, как это показано в табл.46.

Балл j - го объекта или весомость j - го показателя рассчитываются по формуле (53). В данном случае

где - частота предпочтения i - м экспертом j - го объекта экспертизы; С - общее число суждений одного эксперта, свя­занное с числом объектов экспертизы m (числом измеряемых показателей или коэффициентов весомости) соотношением

Пример 76. Предположим для простоты, что пять экспертов, выра­зили свое мнение о шести объектах экспертизы одинаково: так как это представлено в табл. 46. Определить весомость каждого объекта и 1 построить ранжированный ряд.

Решение 1. Частоты предпочтений

Поэтому полученные в п.3 значения G j можно рассматривать уже как нормированные и, в частности, использовать как весовые коэффициенты.

5. Ранжированный ряд объектов экспертизы имеет вид: № 3; 1;№2; №6; №5; №4.

Опыт попарного сопоставления по табл. 46 показывает, что в силу особенностей человеческой психики эксперты иногда бессознательно отдают предпочтение не тому объекту в очередной рассматриваемой паре, который важнее, а тому, который стоит в перечне первым. Чтобы избежать этого, используют свободную часть таблицы и проводят попарное сопоставление дважды (например, сначала первого объекта со вторым, третьим, четвертым и т.д., затем второго с первым, третьим, четвертым, ... и так до последнего, а потом в обратном порядке: последнего с предпоследним, и до первого; предпоследнего с последним, предыдущим... и вновь до первого). Таким образом, каждая пара объектов сопоставляется дважды, причем в разном порядке и по истечении некоторого времени. При таком сопоставлении, называемым полным или двойным, удается иногда избежать случайных ошибок и, кроме того, выявить экспертов, небрежно относящихся к своим обязанностям или не имеющих определенной точки зрения. Иначе говоря, двойное попарное сопоставление обладает более высокой надежностью, чем однократное. Порядок расчетов при нем остается прежним, за исключением того, что С = т (т-1).

Уточнить результаты измерений или значения весовых коэффициентов, полученные попарным сопоставлением, можно методом последовательного приближения. Первоначальные результаты (см. п. 3 примера 76) рассматриваются в этом случае как первое приближение. Во втором приближении они используются как весовые коэффициенты G j (1) суждений экспертов. Полученные с учетом этих весовых коэффициентов новые результаты в третьем приближении рассматриваются опять как весовые коэффициенты G j (2) тех же мнений экспертов и т.д. Согласно теореме Перрона-Фробениуса, при определенных условиях, которые на практике всегда выполняются, этот процесс сходится, т.е. нормированные результаты измерений g j или весовые коэффициенты стремятся к некоторым постоянным значениям, строго отражающим соотношения между объектами экспертизы при установленных экспертами исходных данных.

Пример 77 . Результаты полного попарного сопоставления одним экспертом пяти объектов экспертизы представлены табл. 47, подобной табл. 18, с той лишь разницей, что с целью исключения из рассмот­рения отрицательных чисел предпочтение j -го объекта перед i -м обозначено цифрой 2, равноценность- цифрой 1, а предпочтение i - го объекта перед j - м - цифрой 0.

Что можно сказать о результате измерения в третьем приближении? Решение.

1. В первом приближении

G 1 (1) = 1+2+2+1+2= 8;

G 2 (1) = 0+1+2+2+2= 7;

G 3 (1) = 0+0+1+0+0= 1;

G 4 (1) = 1+0+2+1+2= 6;

G 5 (1) = 0+0+2+0+1= 3.

2. Во втором приближении

G 1 (2) = 8 * 1+7 * 2+1 * 2+6 * 1+3 * 2= 36;

G 2 (2) = 8 * 0+7 * 1+1 * 2+6 * 2+3 * 2= 27;

G 3 (2) = 8 * 0+7 * 0+1 * 1+6 * 0+3 * 0= 1;

G 4 (2) = 8 * 1+7 * 0+1 * 2+6 * 1+3 * 2= 22;

G 5 (2) = 8 * 0+7 * 0+1 * 2+6 * 0+3 * 1= 5.

3. В третьем приближении

G 1 (3) = 36 * 1+27 * 2+1 * 2+22 * 1+5 * 2= 124;

G 2 (3) = 36 * 0+27 * 1+1 * 2+22 * 2 +5 * 2 = 83;

G 3 (3) = 36 * 0+27 * 0+1 *1+22 * 0+5 * 0 = 1;

G 4 (3) = 36 * 1+27 *0+1 * 2+22 * 1+5 * 2 = 70;

G 5 (3) = 36* 0+27* 0+1* 2+22 * 0+5 *1 = 7.

4. Значения g j , приведенные в табл. 47, заметно отличаются в первом и третьем приближении. С каждым следующим приближением они будут уточняться. В ходе уточнения все более подчеркивается предпочтительность первого объекта экспертизы и низкая значимость третьего (в меньшей мере- пятого).

5. Если экспертов несколько, то окончательные результаты должны быть получены путем усреднения их данных.

Метод последовательного приближения позволяет получить строгие количественные результаты измерения по шкале отношений, если известно (или определено экспертным ме­тодом), во сколько раз вес или показатель лучшего из объектов экспертизы превосходит вес или такой же показатель худшего объекта. В таком случае через это отношение, а предпочтение j - го объекта экспертизы перед i - м выражается числом 1 + , равноценность - единицей, а предпочтение i - го объекта перед j - м - числом 1 - , где

После этого попарное сопоставление производится методом последовательного приближения. Процесс уточнения значений g j продолжается до тех пор, пока точность не достигнет заданной. Так как с каждым приближением изменение g j становится все меньшим и меньшим, это условие можно записать в виде , где обычно принимается = 0,001, если 1 < <=1,5, и =0,01, если >5. При промежуточных значениях выбираются и промежуточные значения .

После окончания расчетов фактическое отношение значений крайних членов ранжированного ряда Ф сравнивается с исходным . Если отношение близко к единице, задача считается решенной. В противном случае корректируется и расчет повторяется.

Пример 78 . Лучший объект из шести по сравниваемому показателю превосходит худший в 2,4 раза. Следовательно,

Мнения эксперта об объектах представлены табл. 48.

Перейти к исходным данным для вычисления весовых коэффициентов с точностью не ниже 0,5 %.

6. Таким образом, исходные данные вычисления весовых коэффициентов с требуемой точностью имеют вид, представленный табл. 49.

Опрос экспертов может быть очным и заочным, групповым и индивидуальным, персонифицированным и анонимным. Свои мнения эксперты могут выражать в письменной (путем заполнения таблиц, анкет) или в устной форме (давая интервью, участвуя в дискуссии). Все эти и любые другие варианты экспертного опроса имеют свои достоинства и недостатки, поэтому выбор того или иного из них осуществляется в зависимости от конкретных условий и обстоятельств.

По вопросам : klubok@сайт

ЛЕКЦИЯ №6

ОБРАБОТКА ЭКСПЕРТНЫХ ОЦЕНОК

1. Задачи обработки.

1. Задачи обработки.

В зависимости от целей экспертного оценивания и метода учета экспертных оценок возникают следующие основные задачи:

  1. построение обобщенной оценки понятий и объектов на основе индивидуальных оценок экспертов;

построение обобщенной оценки на основе парного сравнения объектов каждым из экспертов;

определение относительных весов взаимосвязи объектов;

определение зависимостей между ранжировками;

определение согласованности мнений экспертов;

оценка надежности обработки результатов.

При решении многих задач недостаточно упорядочения объектов по одному или группе показателей. Необходимо иметь числовые значения для каждого объекта, определяющие его предпочтение перед другими объектами. Наличие таких оценок позволит определить обобщенную оценку для всей группы экспертов.

Определение согласованности мнений экспертов производится путем вычисления числовой меры, характеризующей степень близости индивидуальных мнений. Анализ значения меры согласования способствует выработке правильного суждения об общем уровне знаний по решаемой проблеме и выявлению группировок мнений экспертов.

Обработка экспертных оценок позволяет вскрыть связанные показатели сравнения и осуществить группировку по степени связи. Так, например, если показатели сравнения - различные цели, а объекты сравнения - средства достижения этих целей, то установление взаимосвязи между ранжировками, упорядочивающими средства с точки зрения достижения целей, позволяет обоснованно ответить на вопрос: "в какой степени достижение одной цели при данных средствах способствует достижению других целей" (то есть установить причинно-следственную связь).

Оценки, получаемые на основе обработки, представляют собой случайные объекты, поэтому одной из важнейших задач процедуры обработки является определение их надежности.

2. Групповая экспертная оценка объектов при непосредственном оценивании.

Существует множество подходов к решению данной задачи. С целью иллюстрации рассмотрим один из простейших. Пусть m экспертов провели оценку n объектов по l показателям. Результаты оценивания представлены величинами, где i - номер объекта, j - номер эксперта, h - номер показателя. Величины, полученные методам непосредственного оценивания, представляют собой числа из некоторого отрезка числовой оси, или баллы.

В качестве групповой оценки для каждого из объектов можно принять среднее взвешенное значение его оценки

(6)

где q h - коэффициенты весов показателей сравнения объектов, k j - коэффициенты компетентности экспертов. Величины q h и k j являются нормированными, то есть

Коэффициенты q h могут быть определены экспертным путем, как средний коэффициент веса h -ого показателя по всем экспертам, то есть

Возможность получение групповой экспертной оценки путем суммирования индивидуальных оценок с весами компетентности и важности основывается на выполнении:

аксиом теории полезности фон Неймана-Моргенштерна для индивидуальных и групповых оценок ;

и условий неразличимости объектов в групповом отношении, если они неразличимы во всех индивидуальных оценках (частичный принцип Парето) .

Коэффициенты компетентности экспертов можно вычислить по апостериорным данным, то есть по результатам оценки объектов. Основной идеей этого вычисления является предположение о том, что компетентность эксперта должна оцениваться по степени согласованности его оценок с групповой оценкой объектов.

Для упрощения дальнейшего изложения, ограничимся рассмотрением случая h =1. То есть когда групповое оценивание объектов проводится на основе только одного показателя. Алгоритм вычисления групповых оценок и коэффициентов компетентности экспертов для этого случая имеет вид:

а) начальные условия при t =0

т.е. начальное значение коэффициентов компетентности для всех экспертов принимается одинаковым и равным.

б) рекуррентные соотношения для t =1,2,3 ...

Групповая оценка для i -ого объекта на t -ом шаге на основе индивидуальных оценок x ij .

- нормировочный коэффициент

j -ого эксперта на t -ом шаге

Коэффициенты компетентности m -ого эксперта из условия нормировки.

в) признак окончания итерационного процесса

Сходимость данной итерационной процедуры доказана в литературе для случая, когда индивидуальные оценки неотрицательны, а эксперты и объекты не распадаются на отдельные группы (то есть когда каждая группа экспертов не оценивает объекты своей группы). В большинстве практических задач эти условия выполняются, что доказывает сходимость алгоритма .

Пример. Три эксперта (m =3) оценили значение двух мероприятий (n =3) по степени их влияния на решение одной из проблем (l =1). Результатами экспертизы явились нормированные оценки мероприятий x 1j + x 2j =1, j=1,2,3 .

x ij

Эксперт 1

Эксперт 2

Эксперт 3

Мероприятие 1

Мероприятие 2

Вычислим групповые оценки мероприятий, приводящих к решению проблемы и коэффициенты компетентности каждого из экспертов. Для этого воспользуемся приведенным выше алгоритмом, задавшись точностью вычисления Е=0,001.

Средние оценки объектов первого приближения (при t =1) будут равны:

x 1 =(0,333;0,667)

Вычислим нормировочный коэффициент  1 :

Значение коэффициентов компетентности первого приближения примут значения:

И тогда k 1 =(0,34;0,30;0,36)

Вычисляя групповые оценки второго и т.д. приближения, получим:

Результат третьего шага удовлетворяет условию окончания итерационного процесса и за значение групповой оценки принимается x  x 3 = (0,3235; 0,6765).

3. Обработка парных сравнений.

При установлении причинно-следственных зависимостей между объектами предметной области, экспертам в ряде случаев сложно выразить их численно. То есть трудно установить количественно степень влияния той или иной причины (объекта) на конкретное следствие. Особенно психологически это сложно, если таких объектов много.

Вместе с тем, эксперты сравнительно легко решают задачу парного сравнения. Эта задача состоит в том, что эксперт устанавливает предпочтения объектов при сравнении всех возможных пар. То есть эксперт, рассматривая все возможные пары объектов, в каждой из них устанавливает ту причину, которая по его мнению оказывает большое влияние на следствие. Возникает вопрос, как получить оценку всей совокупности объектов на основе результатов парного сравнения, выполненного группой экспертов.

Пусть каждый из m экспертов производит оценку влияния на результат всех пар объектов, давая числовую оценку

где h =1,2,... m - номер эксперта, i , j =1,2,... n - номера объектов, исследуемых при экспертизе. Т. е. по результатам экспертизы имеем m -таблиц (матриц) вида (рис.7):

x ij =M

r ij 1

Рис.7. Последовательность обработки парных сравнений

Как следует из рис.7 последовательность обработки парных сравнений заключается в том, что на основании таблиц парных сравнений m -экспертов строится матрица математических ожиданий оценок всех пар объектов. Затем по этой матрице вычисляется вектор коэффициентов относительной важности объектов.

Если при оценке пары O ij из общего количества экспертов m i высказались в пользу предпочтение O i , m j экспертов в пользу O j , а m p считает эти объекты равноправными, то оценка математического ожидания дискретной случайной величины r ij будет равна:

Т.к. общее количество экспертов, то определяя отсюда m p и подставляя его в вышеприведенное выражение, получим

Очевидно, что х ij + х ji = 1 . Совокупность величин х ij образуют матрицу Х=||х ij || размерности n x n , на основе которой можно построить ранжировку всех объектов и определить коэффициенты относительной важности объектов, то есть вектор

k = [ k 1 , k 2 , ... k n ] T

Одним из способов определения значений элементов вектора К является итерационный алгоритм вида:

а) начальное условие t=0

б) рекуррентные соотношения

где Х - матрица математических ожиданий оценок пар объектов, k t - вектор

коэффициентов относительной важности объектов порядка t .

Условие нормировки.

в) признак окончания || k t - k t -1 ||< E .

Если матрица Х неотрицательна и неразложима (то есть путем перестановки строк и столбцов ее нельзя привести к треугольному виду), то при увеличении порядка t   величина  t сходится к максимальному собственному числу матрицы Х, то есть

Это утверждение следует из теоремы Перрона-Фробениуса и доказывает сходимость приведенного выше алгоритма .

Пример. Предположим, что в результате опроса трех (m =3) экспертов о степени влияния на результат трех (n =3) различных факторов (объектов) получены следующие таблицы парных сравнений:

Экспетр 1(R 1 ) Эксперт 2(R 2 ) Эксперт 3(R 3 )

О 1

О 2

О 3

О 1

О 2

О 3

О 1

О 2

О 3

О 1

О 1

О 1

О 2

О 2

О 2

О 3

О 3

О 3

Для получения групповой оценки степени влияния каждого из объектов на результат, построим матрицу математических ожиданий оценок каждой из пар объектов, которая для рассматриваемого примера будет иметь вид:

О 1

О 2

О 3

О 1

О 2

О 3

Значения элементов этой матрицы получены из следующих выражений:

Воспользуемся вышеописанным алгоритмом для получения вектора относительной важности объектов. Для наглядности, каждый из шагов представим в виде:

шаг 0:

шаг 1 :

шаг 2 :

Продолжая итерационный процесс до тех пор, пока норма оценки не будет меньше заданной ((| K i t - K i t -1 |) < 0,001) получим

На четвертом шаге выполняется условие выхода, что позволяет за групповую оценку степени влияния на результат принять вектор коэффициентов относительной важности объектов вида:

4. Определение обобщенных ранжировок.

При групповой экспертной оценке каждому i -ому объекту каждый из j -ых экспертов присваивает r ij . В результате проведения экспертного оценивания получается матрица рангов || r ij || размерности n x m , где n - число объектов (), а m - число экспертов ().

Самый простейший способ получения обобщенной ранжировки заключается в ранжировании объектов по величине сумм рангов, полученных каждым объектов от всех экспертов. В этом случае для матрицы ранжировок || r ij || вычисляются суммы:

Далее объекты упорядочиваются по цепочке неравенств r k < r l < . . .< r q , где, ... , . Отсюда следует обобщенная ранжировка объектов

O k O l ... O q .

Для учета компетентности экспертов достаточно умножить i -ю ранжировку на коэффициенты компетентности j -го эксперта 0  k j  1. В этом случае вычисление суммы рангов для i -ого объекта производится по формуле

что позволяет упорядочить объекты по цепочке неравенств. Следует отметить, что построение таких обобщенных ранжировок является корректной процедурой только в том случае, если ранги назначаются как места объектов в виде натуральных чисел 1,2,..., n .

Однако ранги объектов определяют только порядок расположение объектов по показателям сравнения. Ранги как числа не дают возможность сделать вывод о том, на сколько или во сколько раз предпочтительнее один объект по сравнению с другим. Если ранг 3, то отсюда не следует делать вывод о том, что объект, с рангом 1, в три раза предпочтительнее, чем объект, имеющий ранг, равный трем.

Вместе с тем для использования в ЭС знаний, полученных от экспертов, необходимо не только упорядочение или ранжирование объектов по степени их влияния или воздействия на какой-либо результат, но и определение количественной оценки степени влияния каждого из объектов на результат.

Простейшим методом для реализации этой задачи является подход, основанный на построении обобщенной ранжировки путем перехода от матрицы ранжировок к матрице парных сравнений. Для этого на основе матрицы || r ij || строится m матриц парных сравнений R j (j =1,2,..., m ), где m - число экспертов. Элементы этих матриц определяются следующим образом:

где j - номер эксперта, i и k - номера сравниваемых объектов.

Затем к полученным матрицам парных сравнений всех экспертов применяется рассмотренный ранее метод обработки парных сравнений. Его итерационная процедура позволяет получить коэффициенты относительной важности объектов по степени их влияния на результат. Проиллюстрируем применение этого подхода на примере.

Пример . Пусть три эксперта (m =3) провели ранжировку трех объектов (n =3) по степени их влияния на какой-либо результат и таблица ранжировок имеет вид:

Объект О i

Эксперт 1

Эксперт 2

Эксперт 3

О 1

О 2

О 3

На основе этой таблицы матрица парных сравнений для первого эксперта будет иметь вид:

Аналогичные матрицы парных сравнений для второго и третьего эксперта будут иметь вид:

Используя метод обработки парных сравнений получим последовательность векторов коэффициентов относительной важности объектов:

Шаг

К 1

К 2

К 3

0,481

0,330

0,185

0,489

0,346

0,156

0,348

0,152

0,349

0,151

Итерационная процедура с заданной точностью (Е=0,001) является сходящейся на четвертом шаге к значениям:

что позволяет оценить количественно степень влияния каждого объекта на результат, полученный на основе исходного ранжирования экспертов.

3.5. Замечания к определению групповых оценок.

Все рассмотренные методы получения групповых оценок позволяют получить достоверные результаты в случае хорошо подобранной группы экспертов и согласованности их мнений. Если это не так, то встает задача определения количественной оценки степени согласованности экспертов. Получение количественной меры позволяет более обоснованно интерпретировать причины в расхождении мнений.

Для оценки меры согласованности мнений группы экспертов используют, в частности, дисперсионный и энтропийный коэффициенты конкордации . Кроме этого, при обработке результатов ранжирования могут возникать задачи:

определения зависимости между ранжировками двух экспертов;

связи между достижением двух различных целей при решении одной и той же совокупности проблем;

взаимосвязи между признаками (объектами).

В этих случаях мерой взаимосвязи может служить коэффициент ранговой корреляции. Характеристикой взаимосвязи множества ранжировок будет являться матрица коэффициентов ранговой корреляции. Известны коэффициенты ранговой корреляции Спирмена [ 5 ] и Кендалла [ 5 ] .